G-charge Thouless pumps

Sven Bachmann University of British Columbia

Wojciech De Roeck, Martin Fraas, Tijl Jappens

Quantum Hall effect and Topological phases

Strasbourg, June 2022

Thouless pump

▷ Non-interacting particles in a periodic-in-time potential

$$H(t) = -\frac{d^2}{dx^2} + V(x,t)$$
 $V(x,t+T) = V(x,t)$

▷ Thouless (1983): If

- 1. the driving is slow (adiabatic)
- 2. the Fermi level is in a gap for all $t \in [0,T]$

then

 \triangleright From 0 to T: loop of Fermi projections

Interacting setting

 \triangleright Quantum spin chain, with algebra

$$\mathcal{A} = \otimes_{x \in \mathbb{Z}} \mathcal{A}_x \qquad \mathcal{A}_x \simeq M_{n \times n}(\mathbb{C})$$

▷ State as a normalized linear functional

$$\psi: \mathcal{A} \to \mathbb{C} \qquad \psi(1) = 1$$

 \triangleright Symmetry: Compact group G and a continuous action on \mathcal{A}_x :

$$\gamma: G \times \mathcal{A}_x \to \mathcal{A}_x, \qquad A \mapsto \gamma_g(A)$$

such that

$$\gamma_g \circ \gamma_h = \gamma_{gh}$$

 \rightsquigarrow extends to all ${\cal A}$

G-invertible state

 $\triangleright \psi$ is *G*-invariant

$$\psi(\gamma_g(A)) = \psi(A)$$

 $\triangleright \psi$ is invertible (Kitaev): There is a product state ω , a state $\bar{\psi}$ s.t.

 $\psi \otimes_{\mathrm{aux}} \bar{\psi} \sim \omega$

No long range entanglement Equivalence: $\phi \sim \phi'$ if

$$\phi'(A) = \phi(\tau_1^H(A))$$

where τ_1^H is a Hamiltonian evolution by H(s) over $s \in [0, 1]$ $\triangleright \ \psi$ is *G*-invertible if it is *G*-invariant and invertible with

$$\gamma_g(H(s)) = H(s)$$

Classification

- Classification of G-invertible states in 1d: (Chen-Gu-Wen 2011, Ogata 2021, Kapustin-Sopenko-Yang 2021)
 Equivalence classes labelled by projective representations of G
- \triangleright Adiabatic pumps: classify loops of *G*-invertible states:

$$\psi(s), s \in [0,1] : \psi(0) = \psi(1)$$

Classification of pumping

 $\triangleright\,$ What is a loop of states? No good topology so

$$\psi(s)(A) = \psi(0)(\tau_s^K(A))$$

for time-dependent Hamiltonian $K(s), s\in[0,1] \rightsquigarrow$ local continuity A G-loop requires $\gamma_g(K(s))=K(s)$

▷ Equivalence of paths (hence loops)? Local homotopy

The index: un jeu d'enfant

Pumping charge

Consider the truncated Hamiltonian $K_{-}(s)$ acting only on $(-\infty,0]$ and the pumped state

$$\psi_{-}(s) = \psi(0) \circ \tau_{s}^{K_{-}}$$

In general:

$$\psi(1)=\psi(0)$$
 but $\psi_-(1)
eq\psi(0)$

Expect: $\psi_{-}(1)$ carries a G-charge pumped from $-\infty$ Cannot be removed locally

Sven

The pumped state

Because of

1. short range entanglement,

2. locality of the dynamics along the loop,

and $\psi(1) = \psi(0)$, we have

$$\lim_{r \to \infty} \|\psi_{-}(1)(A_r) - \psi(0)(A_r)\| = 0 \qquad \operatorname{supp}(A_r) \cap [-r, r] = \emptyset$$

 $\rightsquigarrow \psi_{-}(1)$ and $\psi(0)$ are equal at infinity; equivalently, $\psi_{-}(1)$ and $\psi(0)$ only differ along the cut

Mathematical consequence: $\psi_{-}(1)$ and $\psi(0)$ are unitarily equivalent

GNS representation of any state ω on the chain algebra \mathcal{A} :

$$(\mathcal{H}_{\omega}, \pi_{\omega}, \Omega_{\omega})$$

such that

$$\omega(A) = \langle \Omega_{\omega} | \pi_{\omega}(A) | \Omega_{\omega} \rangle$$

In general, two states ω, ν cannot be represented in the same Hilbert space:

$$\nu(A) \stackrel{?}{=} \langle \Psi_{\nu} | \pi_{\omega}(A) | \Psi_{\nu} \rangle \qquad | \Psi_{\nu} \rangle = U | \Omega_{\nu} \rangle$$

In fact: $U: \mathcal{H}_{\nu} \to \mathcal{H}_{\omega}$ exists if and only if ω, ν are equal at infinity

Pumping index

Hence, $\psi_{-}(1)$ has a vector representative in GNS of initial state $\psi(0)$

$$|\Psi_{\psi_{-}(1)}\rangle \in \mathcal{H}_{\psi(0)}$$

 \rightsquigarrow 0-dimensional problem now

Unitary representation U(g) of γ_g in GNS of G-invariant $\psi(0)$:

$$\pi_{\psi(0)}(\gamma_g(A)) = U(g)^* \pi_{\psi(0)}(A) U(g)$$

By G-invariance of $\psi_{-}(1), \psi(0)$:

$$U(g)|\Psi_{\psi_{-}(1)}\rangle = e^{ih(g)}|\Psi_{\psi_{-}(1)}\rangle \qquad U(g)|\Omega_{\psi(0)}\rangle = |\Omega_{\psi(0)}\rangle$$

Loop index:

$$\operatorname{Ind}(\psi) = h(\cdot) \in \operatorname{Hom}(G, \mathbb{S}^1)$$

Classification of G-Thouless pumps

Theorem [B-De Roeck-Fraas-Jappens] For a compact group G,

- 1. If ψ is a constant loop, then $\operatorname{Ind}(\psi) = 0$
- 2. For any $h \in \operatorname{Hom}(G, \mathbb{S}^1)$, there is a loop such that $\operatorname{Ind}(\psi) = h$
- 3. If ψ_1, ψ_2 are homotopic, then $\operatorname{Ind}(\psi_1) = \operatorname{Ind}(\psi_2)$
- 4. If ψ_1, ψ_2 have G-equivalent basepoints and $\text{Ind}(\psi_1) = \text{Ind}(\psi_2)$, then ψ_1, ψ_2 are homotopic
- 5. Additivities:
 - $\triangleright \text{ Stacking: } \operatorname{Ind}(\psi_1 \otimes_{\operatorname{aux}} \psi_2) = \operatorname{Ind}(\psi_1) + \operatorname{Ind}(\psi_2)$
 - \triangleright Concatenation: $\operatorname{Ind}(\psi_1 \boxplus \psi_2) = \operatorname{Ind}(\psi_1) + \operatorname{Ind}(\psi_2)$

Example

Classification of G-Thouless pumps

Note:

- $\triangleright \ \operatorname{Hom}(G, \mathbb{S}^1) = H^1(G, \mathbb{S}^1),$ the first cohomology group of G
- \triangleright Projective representations are classified by $H^2(G,\mathbb{S}^1),$ the second cohomology group of G

In other words: The full classification of G-loops in 1d is given by

$$H^{1+1}(G,\mathbb{S}^1)\oplus H^{0+1}(G,\mathbb{S}^1)$$

namely

(basepoints, loops)

Central claim:

If $\operatorname{Ind}(\psi) = 0$ and $\psi(0)$ is a product, then ψ is a contractible loop Sketch:

- 1. Split into loops on finite intervals of the chain
- 2. Contract each factor
- 3. Contract remaining short loop

Splitting a loop once

$$\psi(s) = \psi(0) \circ \tau_s^K$$

▷ First split $K = K_- + K_+ + K_0$, with $supp(K_{\pm}) \subset \mathbb{Z}_{\pm}$ ▷ Since $\psi(0)$ is a product

$$\psi(0) \circ \tau_1^{K_- + K_+} = \psi_- \otimes \psi_+$$

where ψ_{-} is the pumped state (ψ_{+} is its *G*-inverse) There are a \tilde{K}^{\pm} localized around {0} such that

$$\psi_{\pm} = \psi(0)_{\pm} \circ \tau_1^{\tilde{K}^{\pm}}$$

Charge cannot be created locally:

Vanishing index $\Leftrightarrow \tilde{K}^{\pm}$ can be chosen G-invariant

Splitting a loop

Conclusion:

$$\psi(0)\circ\tau_1^{K-K_0}=\psi_-\otimes\psi_+=\psi(0)\circ\tau_1^{\tilde{K}_-+\tilde{K}_+}$$

New split, G-invariant loop

$$\psi(0) \circ \tau_1^{K-K_0} \circ (\tau_1^{\tilde{K}_- + \tilde{K}_+})^{-1} = \psi(0)$$

Summarizing: There is G-invariant $E_0(s)$ such that

- 1. Loop: $\psi(0) \circ \tau_1^{K+E_0} = \psi(0)$
- 2. Split loop: $K(s) + E_0(s)$ is split at $\{0\}$
- 3. Local perturbation: $E_0(s)$ supported around $\{0\}$

Splitting a loop

With points far apart,

the generator

$$K + \sum_{n} E_{n}$$

is almost split at all sites $Rn, n \in \mathbb{Z}$.

Correcting:

$$\alpha^K = \alpha^{\tilde{K}(R)} \circ \alpha^{W(R)} \circ \alpha^{\bar{K}(R)}$$

 $\triangleright \tilde{K}(R), \bar{K}(R)$ split over finite intervals I_n, J_n generating loops $\triangleright W(R)$ remainder of $\mathcal{O}(R^{-\infty})$ Over any finite interval: Any loop of state is contractible, hence

 $\psi(0)\circ lpha_s^K$ is homotopic to a short loop $\psi(0)\circ lpha_s^{W(R)}$

Contracting the short loop:

- $\triangleright\,$ The product state $\psi(0)$ is a gapped ground state
- \triangleright By perturbation theory, $\psi(0)\circ lpha_s^{W(R)}$ are all gapped ground states
- ▷ Use parallel transport to contract the short loop

Higher dimensions?

- $\triangleright\,$ In d dimensions: The pumped state is an almost $(d-1)\mbox{-dimensional}$ $G\mbox{-invertible state}$
- \triangleright Natural conjecture: G-loops in d dimensions with a fixed basepoint have the same classification as (d-1)-dimensional G-invertible states
- \triangleright For d < 5: $H^d(G, \mathbb{S}^1)$
- \triangleright Technical challenge: \rightsquigarrow no common GNS Hilbert space

