Landau levels for Bochner Laplacian, Conference on quantum Hall effect and topological phases, Strasbourg, june 2022

Laurent Charles

Landau level

The Landau Hamiltonian is the operator \hat{H} acting on $L^{2}\left(\mathbb{R}^{2}\right)$

$$
\begin{aligned}
\hat{H} & =\frac{1}{2}\left(\pi_{x}^{2}+\pi_{y}^{2}\right) & & \text { with } \pi_{x}=\frac{1}{i} \partial_{x}+\frac{B}{2} y, \pi_{y}=\frac{1}{i} \partial_{y}-\frac{B}{2} x \\
& =B\left(\mathfrak{a}^{*} \mathfrak{a}+\frac{1}{2}\right) & & \text { with } \mathfrak{a}=\frac{1}{\sqrt{2 B}}\left(-\pi_{y}+i \pi_{x}\right),\left[\mathfrak{a}, \mathfrak{a}^{*}\right]=1
\end{aligned}
$$

The spectrum of \hat{H} is $\left\{B\left(n+\frac{1}{2}\right) / n \in \mathbb{N}\right\}$. Its eigenspaces are the Landau levels

$$
\operatorname{Ker}\left(\hat{H}-B\left(n+\frac{1}{2}\right)\right)=\left(\mathfrak{a}^{*}\right)^{n} \operatorname{Ker}\left(H-\frac{B}{2}\right)
$$

If we restrict \hat{H} to $\operatorname{span}\left\{\left(\mathfrak{a}^{*}\right)^{n}|1\rangle, n \in \mathbb{N}\right\}$ with $|1\rangle=e^{-\frac{B}{4}\left(x^{2}+y^{2}\right)}$, same spectrum but simple eigenvalues.

Goal

- define Landau levels for Bochner Laplacian of compact manifold, understand influence of topology and geometry
- dimension of Landau levels in terms of characteristic classes, propagation, density of states, entanglement.

Bochner Laplacian

Datas:

- (M, g) compact riemannian manifold with $\partial M=\emptyset$
- $L \rightarrow M$ hermitian line bundle with a connexion ∇
- $V \in \mathcal{C}^{\infty}(M, \mathbb{R})$ a potential

The Bochner Laplacian, or Schrödinger operator with magnetic field $\omega=i \operatorname{courb}(\nabla)$ is

$$
\begin{array}{rlrl}
\Delta & =\frac{1}{2} \nabla^{*} \nabla+V & & \text { acting on } \mathcal{C}^{\infty}(M, L) \\
& =-\frac{1}{2 \sqrt{g}} \nabla_{i}\left(g^{i j} \sqrt{g} \nabla_{j}\right)+V & & \text { with } \nabla_{i}=\partial_{x_{i}}+\frac{1}{i} a_{i} \\
& & \text { where } d\left(a_{i} d x_{i}\right)=\omega
\end{array}
$$

Since $\Delta=-\frac{1}{2} g^{i j} \partial_{x_{i}} \partial_{x_{j}}+$ lower order derivative terms, Δ is an elliptic differential operator. Hence Δ has a discrete spectrum, bounded from above, eigenvalues with finite multiplicities and smooth eigensections.

Semiclassical limit, $k=\hbar^{-1}, k \rightarrow \infty$

take $k \in \mathbb{N}$ and replace L by $L^{k}=L^{\otimes k}, \nabla$ by $\nabla^{L^{k}}$ and set

$$
\begin{aligned}
\hat{H}_{k} & :=\frac{k^{-2}}{2}\left(\nabla^{L^{k}}\right)^{*} \nabla^{L^{k}}+k^{-1} V \\
& =\frac{1}{2} g^{i j} \pi_{i} \pi_{j}+b_{i} k^{-1} \pi_{i}+k^{-1} V
\end{aligned}
$$

with $\pi_{i}=\frac{1}{i k} \partial_{x_{i}}-a_{i}$, the dynamical moments, $i k\left[\pi_{i}, \pi_{j}\right]=\omega_{i j}$.
\hat{H}_{k} is a semiclassical differential operator with order 0 and symbol $H \in \mathcal{C}^{\infty}\left(T^{*} M, \mathbb{R}\right)$ equal to $H(x, \xi)=\frac{1}{2} g^{i j}(x) \xi_{i} \xi_{j}$.
Weyl law
for any $E \in \mathbb{R}$, we have in the large k limit

$$
\operatorname{rank} 1_{]-\infty, E]}\left(\hat{H}_{k}\right)=\left(\frac{k}{2 \pi}\right)^{m}(\operatorname{vol}(\{H \leqslant E\})+\mathrm{o}(1))
$$

with $m=\operatorname{dim} M$ and vol is for the Liouville form Ω^{m} / m ! where $\Omega=\sum d \xi_{i} \wedge d x_{i}-\omega$.

Landau symbol

Let us consider eigenvalues of \hat{H}_{k} around $E=0$ at the scale k^{-1}. Assume that ω is non-degenerate, so m is even.

Definition of the Landau symbol $L_{H}\left(x_{0}\right)$ of \hat{H}_{k} at $x_{0} \in M$

- take leading order terms in $\hat{H}_{k}=\frac{1}{2} g^{i j} \pi_{i} \pi_{j}+b_{i} k^{-1} \pi_{i}+k^{-1} V$ with the convention $\operatorname{ord}(f)=0, \operatorname{ord}\left(\pi_{i}\right)=\frac{1}{2} \operatorname{ord}\left(k^{-1}\right)=-1$.
- put $k=1$ and freeze coordinates at x_{0},

Then set

$$
L_{H}\left(x_{0}\right):=\frac{1}{2} g^{i j}\left(x_{0}\right) \pi_{i}\left(x_{0}\right) \pi_{j}\left(x_{0}\right)+V\left(x_{0}\right)
$$

acting on $L^{2}\left(\mathbb{R}^{m}\right)$, with $\pi_{i}\left(x_{0}\right)$ the dynamical moment for $\omega_{i j}\left(x_{0}\right) d x_{i} \wedge d x_{j}$.

Surface case

$m=2, g^{i j}\left(x_{0}\right)=\delta_{i j}, \omega\left(x_{0}\right)=B\left(x_{0}\right) d x_{1} \wedge d x_{2}$ with $B\left(x_{0}\right)>0$.
Then the spectrum of $L_{H}\left(x_{0}\right)$ is $\left\{B\left(x_{0}\right)\left(n+\frac{1}{2}\right)+V\left(x_{0}\right) / n \in \mathbb{N}\right\}$.

Landau levels for surfaces

set $\lambda_{n}=B\left(n+\frac{1}{2}\right)+V$ so that $\operatorname{spec} L_{H}\left(x_{0}\right)=\left\{\lambda_{n}\left(x_{0}\right) / n \in \mathbb{N}\right\}$.
Demailly Weyl law (85)

$$
\operatorname{rank} 1_{(-\infty, E)}\left(k \hat{H}_{k}\right)=\frac{k}{2 \pi} \sum_{n} \operatorname{vol}\left(\lambda_{n} \leqslant E\right)+\mathrm{o}(k)
$$

where vol is the volume in M for ω.
n-th Landau level \mathcal{H}_{n}
Assume there exists E_{-}, E_{+}such that $\max \lambda_{n-1} \leqslant E_{-} \leqslant \min \lambda_{n}$ and $\max \lambda_{n} \leqslant E_{+} \leqslant \min \lambda_{n+1}$. Set $\mathcal{H}_{n}=\operatorname{Im} 1_{\left[E_{-}, E_{+}\right]}\left(k \hat{H}_{k}\right)$.
Then when k is large,

$$
\operatorname{dim} \mathcal{H}_{n}=\frac{k}{2 \pi} \operatorname{vol}(M)+\left(\frac{1}{2}+n\right) \chi(M)
$$

Here, $\operatorname{vol}(M) / 2 \pi$ is the Chern number of L.
For B, V and Gaussian curvature constant, this is known from the 90's. Otherwise this seems to be new.

Comments

1. For $V=0$ and B constant, Weitzenböck formula
$k \hat{H}_{k}=k \bar{\partial}_{L^{k}}^{*} \bar{\partial}_{L^{k}}+\frac{1}{2} B$ and Kodaira inequalities leads to

$$
\mathcal{H}_{0}=\left\{\text { holomorphic sections of } L^{k}\right\}
$$

the dimension is given by Riemann-Roch theorem.
2. For $V=0, B$ and Gaussian curvature S constant, by lengo-Li (94), there exists ladder operators $\mathcal{C}^{\infty}\left(M, L^{k}\right) \rightarrow \mathcal{C}^{\infty}\left(M, L^{k} \otimes K^{-n}\right)$ restricting to isomorphisms between \mathcal{H}_{n} and lowest Landau level of $k^{-2} \Delta_{L^{k} \otimes K^{-n}}$. Here K is the canonical bundle. Furthermore, we have a single eigenvalue, $\lambda_{n}=B\left(n+\frac{1}{2}\right)+k^{-1} S \frac{n(n+1)}{2}$.
3. In my proof, the canonical bundle appears through

$$
K_{x}^{-n}=\operatorname{ker}\left(L_{H}(x)-\lambda_{n}(x)\right)
$$

Here, $L_{H}(x)$ acts on $\operatorname{span}\left(\pi_{i_{1}}(x) \ldots \pi_{i_{n}}(x)|1\rangle\right)$

Higher dimensions

In any dimension m, Demailly's Weyl law holds with the $\lambda_{n}(x)$ defined as the eigenvalues of $H_{L}(x)$ counted with multiplicities.
$\operatorname{spec}\left(L_{H}(x)\right)=\left\{\sum_{i} B_{i}(x)\left(\alpha(i)+\frac{1}{2}\right)+V(x), \alpha \in \mathbb{N}^{m / 2}\right\}$ where $0<B_{1} \leqslant \ldots \leqslant B_{m / 2}$ are the g-eigenvalues of ω^{1}.

Theorem (C 21)
If there exists $E \in \mathbb{R} \backslash \bigcup_{x} \operatorname{spec}\left(L_{H}(x)\right)$, then when k is large,

$$
\begin{aligned}
\operatorname{rank} 1_{]-\infty, E]}\left(k \hat{H}_{k}\right) & =\int_{M} \operatorname{Ch}\left(L^{k} \otimes F\right) \operatorname{Todd}(M) \\
& =\left(\frac{k}{2 \pi}\right)^{m / 2} \operatorname{vol}(M) \operatorname{rank}(F)+\mathcal{O}\left(k^{\frac{m}{2}-1}\right)
\end{aligned}
$$

with $F \rightarrow M$ the vector bundle with $F_{X}=\operatorname{Im} 1_{]-\infty, E]}\left(H_{L}(x)\right)$.

[^0]Assume that $B_{1}=\ldots=B_{m / 2}=B$ and let $\lambda_{n}=B\left(n+\frac{m}{4}\right)+V$. The $\lambda_{n}(x)$ are the eigenvalues of $L_{H}(x), \operatorname{mult}\left(\lambda_{n}(x)\right)=\binom{n+m / 2-1}{m / 2-1}$. Let E_{-}, E_{+}be such that $\lambda_{n-1}<E_{-}<\lambda_{n}<E_{+}<\lambda_{n+1}$ and define the n-th Landau level as $\mathcal{H}_{n}=\operatorname{Im}\left(1_{\left(E_{-}, E_{+}\right)}\left(k \hat{H}_{k}\right)\right)$. Then by the previous theorem, when k is large

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}_{n}=\int_{M} \operatorname{Ch}\left(L^{k} \otimes \operatorname{Sym}^{n}\left(T^{1,0} M\right)\right) \text { Todd } M \tag{1}
\end{equation*}
$$

Earlier results for $B_{1}=\ldots=B_{m / 2}=1$ and $V=0$ so $\operatorname{spec} L_{H}(x)=\frac{m}{4}+\mathbb{N}$:

1. Lowest Landau level ($n=0$): when ω is Kähler, (1) follows from Riemann-Roch-Hirzebruch theorem and Kodaira vanishing theorem. In the symplectic case, this is a theorem of Guillemin-Uribe (88) and Borthwick-Uribe (96).
2. Higher levels: the existence of gaps was proved by Faure-Tsuji (15)

Dynamics in Landau levels

Assume that $B_{1}=\ldots=B_{m / 2}=B$ and let $\lambda_{n}=B\left(n+\frac{m}{4}\right)+V$. Set $\mathcal{H}_{n}=\operatorname{Im} 1_{\left[E_{-}, E_{+}\right]}\left(k \hat{H}_{k}\right)$ with $\lambda_{n-1}<E_{-}<\lambda_{n}<E_{+}<\lambda_{n+1}$.

Let $\psi \in \mathcal{H}_{n}$ and define

$$
\Psi(t)=\exp \left(i t k \hat{H}_{k}\right) \Psi, \quad t \in \mathbb{R}
$$

The L^{2}-norm of $\Psi(t)$ is $\left(\int_{M}|\Psi(t)|^{2}(x) d \mu_{g}(x)\right)^{1 / 2}$, so if $\|\Psi\|=1$, $|\Psi(t)|^{2}$ is the probability density function of the particle's position.

Theorem

$$
|\Psi(k t)|^{2} \mu_{g}=\left(\Phi_{t}\right)_{*}\left(|\Psi|^{2} \mu_{g}\right)+\mathcal{O}\left(k^{-1}\right)
$$

where $\left(\Phi_{t}\right)$ is the Hamiltonian flow of λ_{n} in (M, ω).
More precisely, for any $f \in \mathcal{C}^{\infty}(M, \mathbb{R})$, $\int|\Psi(k t)|^{2} f \mu_{g}=\int|\Psi|^{2}\left(f \circ \Phi_{t}\right) \mu_{g}+\mathcal{O}_{f}\left(k^{-1}\right)$ and the \mathcal{O} is uniform when t remains bounded.

Density of states

Let $\left(\psi_{k, i}\right)$ be an onb of eigenvectors, $\hat{H}_{k} \psi_{k, i}=E_{k, i} \psi_{k, i}$.
For any $a, b \in \mathbb{R}$ with $a<b$ and $x \in M$, set

$$
N(x, a, b, k)=\sum_{i, k E_{k, i} \in[a, b]}\left|\psi_{k, i}(x)\right|^{2}
$$

Theorem (C. 21)
if $a, b \notin \operatorname{spec} L_{H}(x)$, then

$$
N(x, a, b, k)=\left(\frac{k}{2 \pi}\right)^{m / 2} \sum_{\ell=0}^{\infty} m_{\ell} k^{-\ell}+\mathcal{O}\left(k^{-\infty}\right)
$$

with $m_{0}=\sharp\left([a, b] \cap \operatorname{spec} L_{H}(x)\right)$.
This is proved only for $a, b<E$ with $E \in \mathbb{R} \backslash \bigcup_{x \in M} \operatorname{spec}\left(L_{H}(x)\right)$.

Entanglement

Assume that $B_{1}=\ldots=B_{m / 2}=B$ and let $\lambda_{n}=B\left(n+\frac{m}{4}\right)+V$. Set $\mathcal{H}_{\leqslant n}:=\operatorname{Im} 1_{(-\infty, E)}\left(k \hat{H}_{k}\right)$ with $\lambda_{n}<E<\lambda_{n+1}$.
Consider the fermion $\Psi=\Psi_{k, 1} \wedge \ldots \wedge \Psi_{k, d_{k}}$ where $\left(\Psi_{k, i}\right)_{i=1}^{d_{k}}$ is an onb of $\mathcal{H}_{\leqslant n}$. Its probability in configuration space $M^{d_{k}}$ is

$$
\left|\operatorname{det}\left(\Psi_{k, i}\left(x_{j}\right)\right)_{i, j}\right|^{2} d \mu_{g}^{\otimes d_{k}}\left(x_{1}, \ldots, x_{d_{k}}\right)
$$

Let A be a domain of M and N_{A} be the random variable of $M^{d_{k}}$,

$$
N_{A}\left(x_{1}, \ldots, x_{d_{k}}\right)=\sharp\left\{i, x_{i} \in A\right\} .
$$

Theorem
If the boundary of A is smooth, then

$$
\mathbb{E}\left(N_{A}\right) \sim C_{n, m} k^{m / 2} \operatorname{vol}(A), \quad \operatorname{var}\left(N_{A}\right) \sim C_{n, m}^{\prime} k^{(m-1) / 2} \operatorname{vol}(\partial A)
$$

where the volumes are for the metric $B g$.
based on previous work with B. Estienne (18). Related work by Leschke, Sobolev, Spitzer (20).

References

My own work

- arXiv:2012.14190, Landau levels on a compact manifold
- arXiv:2109.05508, On the spectrum of non degenerate magnetic Laplacian

Other references

- J-P. Demailly. Champs magnétiques et inégalités de Morse pour la $d^{\prime \prime}$-cohomologie. Ann. Inst. Fourier, 85.
- V. Guillemin and A. Uribe. The Laplace operator on the nth tensor power of a line bundle: eigenvalues which are uniformly bounded in n. Asymptotic Anal., 88
- D. Borthwick and A. Uribe. Almost complex structures and geometric quantization. Math. Res. Lett., 96.
- F. Faure and M. Tsujii. Prequantum transfer operator for symplectic Anosov diffeomorphism. Astérisque, 15.
- two papers by Yuri Kordiukov, arxiv:2012.14196, 2012.14198

[^0]: ${ }^{1}$ With good coordinates $g_{i j}\left(x_{0}\right)=\delta_{i j}$ and
 $\left.\omega\right|_{x_{0}}=B_{1}\left(x_{0}\right) d x_{1} \wedge d x_{2}+\ldots+B_{m / 2}\left(x_{0}\right) d x_{m-1} \wedge d x_{m}$

