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Landau level
The Landau Hamiltonian is the operator Ĥ acting on L2(R2)

Ĥ = 1
2(π2x + π2y ) with πx = 1

i ∂x + B
2 y , πy = 1

i ∂y −
B
2 x

= B(a∗a + 1
2) with a = 1√

2B
(−πy + iπx), [a, a∗] = 1

The spectrum of Ĥ is {B(n + 1
2)/ n ∈ N}. Its eigenspaces are the

Landau levels

Ker(Ĥ − B(n + 1
2)) = (a∗)n Ker(H − B

2 )

If we restrict Ĥ to span{(a∗)n|1〉, n ∈ N} with |1〉 = e−
B
4
(x2+y2),

same spectrum but simple eigenvalues.

Goal
I define Landau levels for Bochner Laplacian of compact

manifold, understand influence of topology and geometry

I dimension of Landau levels in terms of characteristic classes,
propagation, density of states, entanglement.



Bochner Laplacian

Datas:

I (M, g) compact riemannian manifold with ∂M = ∅
I L→ M hermitian line bundle with a connexion ∇
I V ∈ C∞(M,R) a potential

The Bochner Laplacian, or Schrödinger operator with magnetic
field ω = i courb(∇) is

∆ = 1
2∇
∗∇+ V acting on C∞(M, L)

= − 1
2
√
g∇i (g

ij√g∇j) + V with ∇i = ∂xi + 1
i ai

where d(aidxi ) = ω

Since ∆ = −1
2g

ij∂xi∂xj + lower order derivative terms, ∆ is an
elliptic differential operator. Hence ∆ has a discrete spectrum,
bounded from above, eigenvalues with finite multiplicities and
smooth eigensections.



Semiclassical limit, k = ~−1, k →∞
take k ∈ N and replace L by Lk = L⊗k , ∇ by ∇Lk and set

Ĥk := k−2

2 (∇Lk )∗∇Lk + k−1V

= 1
2g

ijπiπj + bik
−1πi + k−1V

with πi = 1
ik ∂xi − ai , the dynamical moments, ik[πi , πj ] = ωij .

Ĥk is a semiclassical differential operator with order 0 and symbol
H ∈ C∞(T ∗M,R) equal to H(x , ξ) = 1

2g
ij(x)ξiξj .

Weyl law

for any E ∈ R, we have in the large k limit

rank 1]−∞,E ](Ĥk) =
( k

2π

)m
(vol({H 6 E}) + o(1))

with m = dimM and vol is for the Liouville form Ωm/m! where
Ω =

∑
dξi ∧ dxi − ω.



Landau symbol

Let us consider eigenvalues of Ĥk around E = 0 at the scale k−1.
Assume that ω is non-degenerate, so m is even.

Definition of the Landau symbol LH(x0) of Ĥk at x0 ∈ M

I take leading order terms in Ĥk = 1
2g

ijπiπj + bik
−1πi + k−1V

with the convention ord(f ) = 0, ord(πi ) = 1
2 ord(k−1) = −1.

I put k = 1 and freeze coordinates at x0,

Then set
LH(x0) := 1

2g
ij(x0)πi (x0)πj(x0) + V (x0)

acting on L2(Rm), with πi (x0) the dynamical moment for
ωij(x0)dxi ∧ dxj .

Surface case
m = 2, g ij(x0) = δij , ω(x0) = B(x0)dx1 ∧ dx2 with B(x0) > 0.
Then the spectrum of LH(x0) is {B(x0)(n + 1

2) + V (x0)/n ∈ N}.



Landau levels for surfaces
set λn = B(n + 1

2) + V so that spec LH(x0) = {λn(x0)/n ∈ N}.

Demailly Weyl law (85)

rank 1(−∞,E)(kĤk) =
k

2π

∑
n

vol(λn 6 E ) + o(k)

where vol is the volume in M for ω.

n-th Landau level Hn

Assume there exists E−, E+ such that maxλn−1 6 E− 6 minλn
and maxλn 6 E+ 6 minλn+1. Set Hn = Im 1[E−,E+](kĤk).
Then when k is large,

dimHn =
k

2π
vol(M) + (12 + n)χ(M).

Here, vol(M)/2π is the Chern number of L.
For B, V and Gaussian curvature constant, this is known from the
90’s. Otherwise this seems to be new.



Comments

1. For V = 0 and B constant, Weitzenböck formula
kĤk = k∂

∗
Lk∂Lk + 1

2B and Kodaira inequalities leads to

H0 = {holomorphic sections of Lk}

the dimension is given by Riemann-Roch theorem.

2. For V = 0, B and Gaussian curvature S constant, by Iengo-Li
(94), there exists ladder operators
C∞(M, Lk)→ C∞(M, Lk ⊗ K−n) restricting to isomorphisms
between Hn and lowest Landau level of k−2∆Lk⊗K−n .
Here K is the canonical bundle. Furthermore, we have a single
eigenvalue, λn = B(n + 1

2) + k−1S n(n+1)
2 .

3. In my proof, the canonical bundle appears through

K−nx = ker(LH(x)− λn(x)).

Here, LH(x) acts on span(πi1(x) . . . πin(x)|1〉)



Higher dimensions

In any dimension m, Demailly’s Weyl law holds with the λn(x)
defined as the eigenvalues of HL(x) counted with multiplicities.

spec(LH(x)) =
{∑

iBi (x)(α(i) + 1
2) + V (x), α ∈ Nm/2

}
where

0 < B1 6 . . . 6 Bm/2 are the g -eigenvalues of ω 1.

Theorem (C 21)

If there exists E ∈ R \
⋃

x spec(LH(x)), then when k is large,

rank 1]−∞,E ](kĤk) =

∫
M

Ch(Lk ⊗ F ) Todd(M)

=
( k

2π

)m/2
vol(M) rank(F ) +O(k

m
2
−1)

with F → M the vector bundle with Fx = Im 1]−∞,E ](HL(x)).

1With good coordinates gij(x0) = δij and
ω|x0 = B1(x0)dx1 ∧ dx2 + . . .+ Bm/2(x0)dxm−1 ∧ dxm



Assume that B1 = . . . = Bm/2 = B and let λn = B(n + m
4 ) + V .

The λn(x) are the eigenvalues of LH(x), mult(λn(x)) =
(n+m/2−1

m/2−1
)
.

Let E−, E+ be such that λn−1 < E− < λn < E+ < λn+1 and
define the n-th Landau level as Hn = Im(1(E−,E+)(kĤk)).
Then by the previous theorem, when k is large

dimHn =

∫
M

Ch(Lk ⊗ Symn(T 1,0M)) ToddM (1)

Earlier results for B1 = . . . = Bm/2 = 1 and V = 0 so
spec LH(x) = m

4 + N:

1. Lowest Landau level (n = 0): when ω is Kähler, (1) follows
from Riemann-Roch-Hirzebruch theorem and Kodaira
vanishing theorem. In the symplectic case, this is a theorem of
Guillemin-Uribe (88) and Borthwick-Uribe (96).

2. Higher levels: the existence of gaps was proved by Faure-Tsuji
(15)



Dynamics in Landau levels

Assume that B1 = . . . = Bm/2 = B and let λn = B(n + m
4 ) + V .

Set Hn = Im 1[E−,E+](kĤk) with λn−1 < E− < λn < E+ < λn+1.

Let Ψ ∈ Hn and define

Ψ(t) = exp(itkĤk)Ψ, t ∈ R

The L2-norm of Ψ(t) is (
∫
M |Ψ(t)|2(x)dµg (x))1/2, so if ‖Ψ‖ = 1,

|Ψ(t)|2 is the probability density function of the particle’s position.

Theorem |Ψ(kt)|2µg = (Φt)∗(|Ψ|2µg ) +O(k−1)

where (Φt) is the Hamiltonian flow of λn in (M, ω).

More precisely, for any f ∈ C∞(M,R),∫
|Ψ(kt)|2f µg =

∫
|Ψ|2(f ◦ Φt) µg +Of (k−1) and the O is

uniform when t remains bounded.



Density of states

Let (ψk,i ) be an onb of eigenvectors, Ĥkψk,i = Ek,iψk,i .
For any a, b ∈ R with a < b and x ∈ M, set

N(x , a, b, k) =
∑

i , kEk,i∈[a,b]

|ψk,i (x)|2

Theorem (C. 21)

if a, b /∈ spec LH(x), then

N(x , a, b, k) =
( k

2π

)m/2
∞∑
`=0

m`k
−` +O(k−∞)

with m0 = ]([a, b] ∩ spec LH(x)).

This is proved only for a, b < E with E ∈ R \
⋃

x∈M spec(LH(x)).



Entanglement
Assume that B1 = . . . = Bm/2 = B and let λn = B(n + m

4 ) + V .

Set H6n := Im 1(−∞,E)(kĤk) with λn < E < λn+1.

Consider the fermion Ψ = Ψk,1 ∧ . . . ∧Ψk,dk where (Ψk,i )
dk
i=1 is an

onb of H6n. Its probability in configuration space Mdk is

| det(Ψk,i (xj))i ,j |2dµ⊗dkg (x1, . . . , xdk ).

Let A be a domain of M and NA be the random variable of Mdk ,

NA(x1, . . . , xdk ) = ]{i , xi ∈ A}.
Theorem
If the boundary of A is smooth, then

E(NA) ∼ Cn,mk
m/2 vol(A), var(NA) ∼ C ′n,mk

(m−1)/2 vol(∂A)

where the volumes are for the metric Bg .

based on previous work with B. Estienne (18). Related work by
Leschke, Sobolev, Spitzer (20).
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