Landau levels for Bochner Laplacian, Conference on quantum Hall effect and topological phases, Strasbourg, june 2022

Laurent Charles

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Landau level

The Landau Hamiltonian is the operator \hat{H} acting on $L^2(\mathbb{R}^2)$

$$\hat{H} = \frac{1}{2} (\pi_x^2 + \pi_y^2)$$
 with $\pi_x = \frac{1}{i} \partial_x + \frac{B}{2} y, \ \pi_y = \frac{1}{i} \partial_y - \frac{B}{2} x$
= $B(\mathfrak{a}^* \mathfrak{a} + \frac{1}{2})$ with $\mathfrak{a} = \frac{1}{\sqrt{2B}} (-\pi_y + i\pi_x), \ [\mathfrak{a}, \mathfrak{a}^*] = 1$

The spectrum of \hat{H} is $\{B(n+\frac{1}{2})/n \in \mathbb{N}\}$. Its eigenspaces are the Landau levels

$$\operatorname{Ker}(\hat{H} - B(n + \frac{1}{2})) = (\mathfrak{a}^*)^n \operatorname{Ker}(H - \frac{B}{2})$$

If we restrict \hat{H} to span $\{(\mathfrak{a}^*)^n | 1\rangle, n \in \mathbb{N}\}$ with $|1\rangle = e^{-\frac{B}{4}(x^2+y^2)}$, same spectrum but simple eigenvalues.

Goal

- define Landau levels for Bochner Laplacian of compact manifold, understand influence of topology and geometry
- dimension of Landau levels in terms of characteristic classes, propagation, density of states, entanglement.

Bochner Laplacian

Datas:

- (M,g) compact riemannian manifold with $\partial M = \emptyset$
- $L \rightarrow M$ hermitian line bundle with a connexion ∇
- ▶ $V \in \mathcal{C}^{\infty}(M, \mathbb{R})$ a potential

The Bochner Laplacian, or Schrödinger operator with magnetic field $\omega = i \operatorname{courb}(\nabla)$ is

$$\begin{split} \Delta &= \frac{1}{2} \nabla^* \nabla + V & \text{acting on } \mathcal{C}^{\infty}(M,L) \\ &= -\frac{1}{2\sqrt{g}} \nabla_i (g^{ij} \sqrt{g} \nabla_j) + V & \text{with } \nabla_i = \partial_{x_i} + \frac{1}{i} a_i \\ & \text{where } d(a_i dx_i) = \omega \end{split}$$

Since $\Delta = -\frac{1}{2}g^{ij}\partial_{x_i}\partial_{x_j}$ + lower order derivative terms, Δ is an elliptic differential operator. Hence Δ has a discrete spectrum, bounded from above, eigenvalues with finite multiplicities and smooth eigensections.

Semiclassical limit, $k = \hbar^{-1}$, $k \to \infty$

take $k \in \mathbb{N}$ and replace L by $L^k = L^{\otimes k}$, ∇ by ∇^{L^k} and set

$$\hat{H}_k := \frac{k^{-2}}{2} (\nabla^{L^k})^* \nabla^{L^k} + k^{-1} V$$

= $\frac{1}{2} g^{ij} \pi_i \pi_j + b_i k^{-1} \pi_i + k^{-1} V$

with $\pi_i = \frac{1}{ik}\partial_{x_i} - a_i$, the dynamical moments, $ik[\pi_i, \pi_j] = \omega_{ij}$. \hat{H}_k is a semiclassical differential operator with order 0 and symbol $H \in \mathcal{C}^{\infty}(T^*M, \mathbb{R})$ equal to $H(x, \xi) = \frac{1}{2}g^{ij}(x)\xi_i\xi_j$. Weyl law

for any $E \in \mathbb{R}$, we have in the large k limit

$$\operatorname{rank} 1_{]-\infty,E]}(\hat{H}_k) = \left(\frac{k}{2\pi}\right)^m (\operatorname{vol}(\{H \leqslant E\}) + \operatorname{o}(1))$$

with $m = \dim M$ and vol is for the Liouville form $\Omega^m/m!$ where $\Omega = \sum d\xi_i \wedge dx_i - \omega$.

Landau symbol

Let us consider eigenvalues of \hat{H}_k around E = 0 at the scale k^{-1} . Assume that ω is non-degenerate, so m is even.

Definition of the Landau symbol $L_H(x_0)$ of \hat{H}_k at $x_0 \in M$

► take leading order terms in $\hat{H}_k = \frac{1}{2}g^{ij}\pi_i\pi_j + b_ik^{-1}\pi_i + k^{-1}V$ with the convention $\operatorname{ord}(f) = 0$, $\operatorname{ord}(\pi_i) = \frac{1}{2}\operatorname{ord}(k^{-1}) = -1$.

• put
$$k = 1$$
 and freeze coordinates at x_0 ,

Then set

$$L_{H}(x_{0}) := \frac{1}{2}g^{ij}(x_{0})\pi_{i}(x_{0})\pi_{j}(x_{0}) + V(x_{0})$$

acting on $L^2(\mathbb{R}^m)$, with $\pi_i(x_0)$ the dynamical moment for $\omega_{ij}(x_0)dx_i \wedge dx_j$.

Surface case

m = 2, $g^{ij}(x_0) = \delta_{ij}$, $\omega(x_0) = B(x_0)dx_1 \wedge dx_2$ with $B(x_0) > 0$. Then the spectrum of $L_H(x_0)$ is $\{B(x_0)(n + \frac{1}{2}) + V(x_0)/n \in \mathbb{N}\}$.

Landau levels for surfaces

set $\lambda_n = B(n + \frac{1}{2}) + V$ so that spec $L_H(x_0) = \{\lambda_n(x_0)/n \in \mathbb{N}\}$. Demailly Weyl law (85)

$$\operatorname{rank} 1_{(-\infty,E)}(k\hat{H}_k) = \frac{k}{2\pi} \sum_n \operatorname{vol}(\lambda_n \leqslant E) + \operatorname{o}(k)$$

where vol is the volume in M for ω .

n-th Landau level \mathcal{H}_n

Assume there exists E_- , E_+ such that $\max \lambda_{n-1} \leq E_- \leq \min \lambda_n$ and $\max \lambda_n \leq E_+ \leq \min \lambda_{n+1}$. Set $\mathcal{H}_n = \operatorname{Im} \mathbb{1}_{[E_-, E_+]}(k\hat{H}_k)$. Then when k is large,

$$\dim \mathcal{H}_n = \frac{k}{2\pi} \operatorname{vol}(M) + (\frac{1}{2} + n)\chi(M).$$

Here, $vol(M)/2\pi$ is the Chern number of *L*. For *B*, *V* and Gaussian curvature constant, this is known from the 90's. Otherwise this seems to be new.

Comments

1. For V = 0 and B constant, Weitzenböck formula $k\hat{H}_k = k\overline{\partial}_{L^k}^*\overline{\partial}_{L^k} + \frac{1}{2}B$ and Kodaira inequalities leads to

 $\mathcal{H}_0 = \{ \text{holomorphic sections of } L^k \}$

the dimension is given by Riemann-Roch theorem.

- For V = 0, B and Gaussian curvature S constant, by lengo-Li (94), there exists ladder operators
 C[∞](M, L^k) → C[∞](M, L^k ⊗ K⁻ⁿ) restricting to isomorphisms between H_n and lowest Landau level of k⁻²Δ_{L^k⊗K⁻ⁿ}. Here K is the canonical bundle. Furthermore, we have a single eigenvalue, λ_n = B(n + ¹/₂) + k⁻¹Sⁿ⁽ⁿ⁺¹⁾/₂.
- 3. In my proof, the canonical bundle appears through

$$K_{x}^{-n} = \ker(L_{H}(x) - \lambda_{n}(x)).$$

Here, $L_H(x)$ acts on span $(\pi_{i_1}(x) \dots \pi_{i_n}(x)|1\rangle)$

Higher dimensions

In any dimension *m*, Demailly's Weyl law holds with the $\lambda_n(x)$ defined as the eigenvalues of $H_L(x)$ counted with multiplicities.

spec $(L_H(x)) = \left\{ \sum_i B_i(x)(\alpha(i) + \frac{1}{2}) + V(x), \ \alpha \in \mathbb{N}^{m/2} \right\}$ where $0 < B_1 \leq \ldots \leq B_{m/2}$ are the *g*-eigenvalues of ω^{-1} .

Theorem (C 21)

If there exists $E \in \mathbb{R} \setminus \bigcup_x \operatorname{spec}(L_H(x))$, then when k is large,

$$\mathsf{rank}\, \mathbb{1}_{]-\infty,E]}(k\hat{H}_k) = \int_M \mathsf{Ch}(L^k\otimes F)\,\mathsf{Todd}(M)$$

 $= \left(rac{k}{2\pi}
ight)^{m/2}\mathsf{vol}(M)\,\mathsf{rank}(F) + \mathcal{O}(k^{rac{m}{2}-1})$

with $F \to M$ the vector bundle with $F_x = \text{Im } \mathbb{1}_{]-\infty,E]}(H_L(x))$.

 Assume that $B_1 = \ldots = B_{m/2} = B$ and let $\lambda_n = B(n + \frac{m}{4}) + V$. The $\lambda_n(x)$ are the eigenvalues of $L_H(x)$, $\operatorname{mult}(\lambda_n(x)) = \binom{n+m/2-1}{m/2-1}$. Let E_- , E_+ be such that $\lambda_{n-1} < E_- < \lambda_n < E_+ < \lambda_{n+1}$ and define the *n*-th Landau level as $\mathcal{H}_n = \operatorname{Im}(1_{(E_-, E_+)}(k\hat{H}_k))$. Then by the previous theorem, when *k* is large

$$\dim \mathcal{H}_n = \int_M \operatorname{Ch}(L^k \otimes \operatorname{Sym}^n(T^{1,0}M)) \operatorname{Todd} M \tag{1}$$

Earlier results for $B_1 = \ldots = B_{m/2} = 1$ and V = 0 so spec $L_H(x) = \frac{m}{4} + \mathbb{N}$:

- 1. Lowest Landau level (n = 0): when ω is Kähler, (1) follows from Riemann-Roch-Hirzebruch theorem and Kodaira vanishing theorem. In the symplectic case, this is a theorem of Guillemin-Uribe (88) and Borthwick-Uribe (96).
- Higher levels: the existence of gaps was proved by Faure-Tsuji (15)

Dynamics in Landau levels

Assume that $B_1 = \ldots = B_{m/2} = B$ and let $\lambda_n = B(n + \frac{m}{4}) + V$. Set $\mathcal{H}_n = \operatorname{Im} \mathbb{1}_{[E_-, E_+]}(k\hat{H}_k)$ with $\lambda_{n-1} < E_- < \lambda_n < E_+ < \lambda_{n+1}$. Let $\Psi \in \mathcal{H}_n$ and define

$$\Psi(t) = \exp(itk\hat{H}_k)\Psi, \qquad t \in \mathbb{R}$$

The *L*²-norm of $\Psi(t)$ is $(\int_{M} |\Psi(t)|^2(x) d\mu_g(x))^{1/2}$, so if $||\Psi|| = 1$, $|\Psi(t)|^2$ is the probability density function of the particle's position.

Theorem
$$|\Psi(\mathbf{k}t)|^2 \mu_g = (\Phi_t)_* (|\Psi|^2 \mu_g) + \mathcal{O}(k^{-1})$$

where (Φ_t) is the Hamiltonian flow of λ_n in (M, ω) .

More precisely, for any $f \in C^{\infty}(M, \mathbb{R})$, $\int |\Psi(kt)|^2 f \mu_g = \int |\Psi|^2 (f \circ \Phi_t) \mu_g + \mathcal{O}_f(k^{-1})$ and the \mathcal{O} is uniform when t remains bounded.

Density of states

Let $(\psi_{k,i})$ be an onb of eigenvectors, $\hat{H}_k \psi_{k,i} = E_{k,i} \psi_{k,i}$. For any $a, b \in \mathbb{R}$ with a < b and $x \in M$, set

$$N(x, a, b, k) = \sum_{i, k \in [a,b]} |\psi_{k,i}(x)|^2$$

Theorem (C. 21) if $a, b \notin \operatorname{spec} L_H(x)$, then

$$N(x, a, b, k) = \left(\frac{k}{2\pi}\right)^{m/2} \sum_{\ell=0}^{\infty} m_{\ell} k^{-\ell} + \mathcal{O}(k^{-\infty})$$

with $m_0 = \sharp([a, b] \cap \operatorname{spec} L_H(x))$.

This is proved only for a, b < E with $E \in \mathbb{R} \setminus \bigcup_{x \in M} \operatorname{spec}(L_H(x))$.

Entanglement

Assume that $B_1 = \ldots = B_{m/2} = B$ and let $\lambda_n = B(n + \frac{m}{4}) + V$. Set $\mathcal{H}_{\leq n} := \text{Im } \mathbb{1}_{(-\infty, E)}(k\hat{H}_k)$ with $\lambda_n < E < \lambda_{n+1}$.

Consider the fermion $\Psi = \Psi_{k,1} \wedge \ldots \wedge \Psi_{k,d_k}$ where $(\Psi_{k,i})_{i=1}^{d_k}$ is an onb of $\mathcal{H}_{\leq n}$. Its probability in configuration space M^{d_k} is

$$|\det(\Psi_{k,i}(x_j))_{i,j}|^2 d\mu_g^{\otimes d_k}(x_1,\ldots,x_{d_k}).$$

Let A be a domain of M and N_A be the random variable of M^{d_k} ,

$$N_A(x_1,\ldots,x_{d_k})=\sharp\{i,\ x_i\in A\}.$$

Theorem

If the boundary of A is smooth, then

 $\mathbb{E}(N_A) \sim C_{n,m} k^{m/2} \operatorname{vol}(A), \quad \operatorname{var}(N_A) \sim C'_{n,m} k^{(m-1)/2} \operatorname{vol}(\partial A)$

where the volumes are for the metric Bg. based on previous work with B. Estienne (18). Related work by Leschke, Sobolev, Spitzer (20).

References

My own work

- arXiv:2012.14190, Landau levels on a compact manifold
- arXiv:2109.05508, On the spectrum of non degenerate magnetic Laplacian

Other references

- J-P. Demailly. Champs magnétiques et inégalités de Morse pour la d''-cohomologie. Ann. Inst. Fourier, 85.
- V. Guillemin and A. Uribe. The Laplace operator on the *n*th tensor power of a line bundle: eigenvalues which are uniformly bounded in *n* . Asymptotic Anal., 88
- D. Borthwick and A. Uribe. Almost complex structures and geometric quantization. *Math. Res. Lett.*, 96.
- F. Faure and M. Tsujii. Prequantum transfer operator for symplectic Anosov diffeomorphism. *Astérisque*, 15.
- two papers by Yuri Kordiukov, arxiv:2012.14196, 2012.14198