Topological electrostatics

Benoît Douçot Dmitry Kovrizhin, Roderich Moessner

June 20, 2022

- Quantum Hall ferromagnets
- Skyrmion lattices in Quantum Hall ferromagnets
- Topological electrostatics

 $\pi_2(S^2) = \mathbb{Z}$

(Picture from Wikipedia)

Multi-Component Systems (Internal Degrees of Freedom)

Hamiltonian can approximately have high SU(4) symmetry

- Zeeman anisotropy: $SU(2) \rightarrow U(1)$
- Graphene: valley weakly split, $O(a/l_B)$
- Bilayers: charging energy: $SU(2) \rightarrow U(1)$; neglect tunnelling

N internal states (spin, valley, layer indices, e. g. N = 4 for graphene). Integer filling factor *M* with $1 \le M \le N - 1$. Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small *g* factor). This selects a ferromagnetic state

Main question: What happens when $\nu = M + \delta \nu$, $\delta \nu << 1$?

N internal states (spin, valley, layer indices, e. g. N = 4 for graphene). Integer filling factor *M* with $1 \le M \le N - 1$. Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small *g* factor). This selects a ferromagnetic state

Main question: What happens when $\nu = M + \delta \nu$, $\delta \nu \ll 1$?

Ferromagnetic state is replaced by slowly varying textures (e. g. Skyrmions lattices for M = 1).

Sondhi, Karlhede, Kivelson, Rezayi, PRB **47**, 16419, (1993), Brey, Fertig, Côté and MacDonald, PRL **75**, 2562 (1995)

- Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL **75**, 2562 (1995)
- Specific heat peak: Bayot et al. PRL **76**, 4584 (1996) and PRL **79**, 1718 (1997)
- Increase in NMR relaxation: Gervais et al. PRL 94, 196803 (2005)
- Raman spectroscopy: Gallais et al, PRL 100, 086806 (2008)
- Microwave spectroscopy: Han Zhu et al. PRL 104, 226801 (2010)

Recent experiments (2020)

LETTERS https://doi.org/10.1038/s41567-019-0729-8

nature physics

Solids of quantum Hall skyrmions in graphene

B. Douçot QHETPS, Strasbourg, June 2022

Example of entangled textures (N = 4, M = 1)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)

- Quantum Hall ferromagnets
- Skyrmion lattices in Quantum Hall ferromagnets
- Topological electrostatics

Work in lowest Landau level with $\nu = M$, $1 \le M \le N - 1$. We choose an *M*-dimensional subspace in \mathbb{C}^N , which corresponds to the *M* occupied internal states. Explicitly, this subspace is generated by the columns of an $N \times M$ matrix *V*.

Consider now a complete basis $\chi^{(\alpha)}(\mathbf{r})$ in the LLL (orbital degree of freedom). A ferromagnetic state is obtained by taking the Slater determinant $|S_V\rangle$ built from single particle states of the form $|\Psi^{(i\alpha)}\rangle$, $(1 \le i \le M)$, given by:

$$\Psi^{(ilpha)}_{a}({\sf r}) = V_{ai}\,\chi^{(lpha)}({\sf r}), \quad 1\leq a\leq N$$

Terminology: The continuous set of *M*-dimensional subspaces in \mathbb{C}^N is a smooth complex manifold of dimension (N - M)M, called the Grassmannian $\operatorname{Gr}(M, N)$.

Slater determinants in the LLL associated to smooth textures (I)

Physical space manifold: $\Sigma = \mathbb{R}^2$ Textures: Smooth maps $\Sigma \to \mathcal{M} = \operatorname{Gr}(\mathcal{M}, \mathcal{N})$ Explicitely: Pick an $\mathcal{N} \times \mathcal{M}$ matrix $V_{ij}(\mathbf{r})$ of maps. This defines a local projector in internal (generalized spin space) $P_V(\mathbf{r}) = V(\mathbf{r})(V^{\dagger}(\mathbf{r})V(\mathbf{r}))^{-1}V^{\dagger}(\mathbf{r})$. Global symmetry: $V(\mathbf{r}) \to gV(\mathbf{r})$ with $g \in SU(\mathcal{N})$. Spontaneously broken in Skyrmion crystals, giving rise to Goldstone modes, besides phonon modes.

Local gauge symmetry: $V(\mathbf{r}) \rightarrow V(\mathbf{r})\Lambda(\mathbf{r})$ with $\Lambda(\mathbf{r}) \in SU(M)$.

Key operation: projection \mathcal{P}_{LLL} onto the lowest Landau level. The quantum state $|\mathcal{S}_V\rangle$ associated to the classical map is the ground-state of the auxiliary single-particle Hamiltonian:

$$H_{\text{aux},V} = -\mathcal{P}_{LLL} \left(\int d^2 \mathbf{r} \sum_{a,b} P_V(\mathbf{r})_{ab} \Psi_a^{\dagger}(\mathbf{r}) \Psi_b(\mathbf{r}) \right) \mathcal{P}_{LLL}$$

Slater determinants in the LLL associated to smooth textures (II)

Main effect of \mathcal{P}_{LLL} : (Moon et al. (1995), Pasquier (2000),...)

$$\begin{array}{lll} n_{\rm el}({\bf r}) &=& \frac{M}{2\pi l^2} - Q({\bf r}) + O(l^2) \\ N_{\rm el} &=& M N_{\Phi} - Q_{\rm top} &\to \ {\rm CONSTRAINT} \end{array}$$

Energy functional:

$$E_{\rm tot} = E_{\rm loc} + E_{\rm non-loc}$$

$$\begin{split} & E_{\rm loc}: \text{ exchange energy (generalized ferromagnet), given by a non-linear } \sigma \text{ model energy functional.} \\ & E_{\rm non-loc} = \frac{e^2}{8\pi\epsilon} \int d^2\mathbf{r} \int d^2\mathbf{r}' \frac{Q(\mathbf{r})Q(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}. \end{split}$$

Slater determinants in the LLL associated to smooth textures (III)

$$E_{\rm tot} = E_{\rm loc} + E_{\rm non-loc}$$

If filling factor is close to *M*, $E_{\text{non-loc}} \ll E_{\text{loc}}$. To find optimal textures, we can therefore:

- Minimize E_{loc} in the presence of the $N_{\text{el}} = MN_{\Phi} Q_{\text{top}}$ constraint. This leads to a continuous family of degenerate configurations, described by holomorphic maps $\Sigma \rightarrow Gr(M, N)$.
- Lift this degeneracy by minimizing E_{non-loc} within this degenerate family. Physically, this favors textures in which the topological charge density is as uniform as possible: this may be described as a problem in *topological electrostatics*.

- Quantum Hall ferromagnets
- Skyrmion lattices in Quantum Hall ferromagnets
- Topological electrostatics

Holomorphic maps from the sphere to $\mathbb{CP}(N-1)$ (I)

 $S^2 \cong \mathbb{CP}(1) \cong \mathbb{C} \cup \{\infty\}$ so we use one coordinate $z \in \mathbb{C}$. Kähler potential on the sphere: $\Phi = \frac{1}{\pi} \log(1 + |z|^2)$ Volume element: $\omega = \frac{dx \wedge dy}{\pi(1 + |z|^2)^2}$ Holomorphic maps $f : S^2 \to \mathbb{CP}(N-1)$: collections of Npolynomials $P_1(z), ..., P_N(z)$. Topological charge: number of intersection points of $f(S^2)$ with an arbitrary hyperplane in $\mathbb{CP}(N-1)$ = maximal degree d of $P_1(z), ..., P_N(z)$. Topological charge density:

$$Q(z,ar{z}) = (1+|z|^2)^2 \partial_z \partial_{ar{z}} \log(\sum_{i=1}^N |P_i(z)|^2)$$

 $Q(z, \bar{z})$ is constant when:

$$\sum_{i=1}^{N} |P_i(z)|^2 = (1+|z|^2)^d$$

Holomorphic maps from the sphere to $\mathbb{CP}(N-1)$ (II)

Hermitian scalar product on degree *d* polynomials:

$$(P,Q)_d = rac{d+1}{\pi} \int d^2 \mathbf{r} \; rac{\overline{P(z)}Q(z)}{(1+|z|^2)^{d+2}}$$

Orthonormal basis: $e_p(z) = \begin{pmatrix} d \\ p \end{pmatrix}^{1/2} z^p$ General texture of degree d: $P_i(z) = \sum_{i=0}^d A_{ii} e_i(z)$

General texture of degree d: $P_i(z) = \sum_{i=0}^{\infty} A_{ij}e_j(z)$ $Q(z, \bar{z})$ is constant when: $A^{\dagger}A = I_{d+1}$

If $d \ge N$: No solution

If $d \le N - 2$: many solutions, but not all components of the maps are linearly independent.

If d = N - 1: $AA^{\dagger} = I_N = A^{\dagger}A$, so $(P_i, P_j)_d = \delta_{ij}$.

Textures with uniform topological charge density \Leftrightarrow Components form an orthonormal basis.

Holomorphic maps from the sphere to $\mathbb{CP}(N-1)$ (III)

0 There exists a unique solution, up to global SU(N) transformations, giving a uniform topological charge density
 Ø No such solution exists

Holomorphic maps from the torus to $\mathbb{CP}(N-1)$ (I)

$$\begin{aligned} \theta(z+\gamma) &= e^{\mathbf{a}\gamma z + \mathbf{b}\gamma} \theta(z) \\ (\theta, \theta')_d &= \int d^2 \mathbf{r} \, \exp(-\frac{\pi d|z|^2}{|\gamma_1 \wedge \gamma_2|}) \overline{\theta(z)} \theta'(z) \end{aligned}$$

 $(\theta_i, \theta_j)_d = \delta_{ij}$

Holomorphic maps from the torus to $\mathbb{CP}(N-1)$ (II)

d = N = 2

Holomorphic maps from the torus to $\mathbb{CP}(N-1)$ (III)

d = N = 4

Spatial variations of topological charge: Q(r) is always γ_1/d and γ_2/d periodic. Unlike on the sphere, Q(r) is not exactly constant.

At large d the modulation contains mostly the lowest harmonic, and its amplitude decays exponentially with d.

Large d behavior for a square lattice:

$$Q(x,y) \simeq \frac{2}{\pi} - 4de^{-\pi d/2} [\cos(2\sqrt{d}x) - 2e^{-\pi d/2} \cos^2(4\sqrt{d}x) + (x \leftrightarrow y)] + \dots$$

Only the triangular lattice seems to yield a true local energy minimum. This has been evidenced by computing eigenfrequencies of small deformation modes.

B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)

Components of a map $f : \Sigma \to \mathbb{CP}(N-1)$ were polynomials on the sphere and θ functions on the torus. Note that polynomials have poles at $z \to \infty$, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ , and choose the components of the maps $s_j(z)$ as global holomorphic sections of L, for $1 \le j \le N$.

Recipe for optimal textures: N = dimension of the space of global holomorphic sections of *L*. Choose components forming an orthonormal basis for a well chosen hermitian product.

Geometric quantization recipe for the hermitian product

ω: volume form associated to constant curvature metric on Σ h^d : hermitian metric on fibers of L^d whose curvature form equals $-d(2\pi i)ω$

$$(s,s')_{L,d} = \int_{\Sigma} h^d(s(x),s'(x))\omega(x)$$

Topological charge form: $\omega_{top} - \omega = \frac{1}{\pi} \partial_z \partial_{\bar{z}} \log B(z, \bar{z})$. $B(z, \bar{z})_{L,d} = \sum_{j=1}^{N} h^d(s_j(z), s_j(z))$

For an orthonormal basis $B(z, \overline{z})$ is the Bergman kernel, whose large *d* asymptotics has been studied a lot in the 90's.

Holomorphic maps from Σ to $\mathbb{CP}(N-1)$ (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin, Lu,...(1990 to 2000)): $B(z, \bar{z}) = d + a_0(z, \bar{z}) + a_{-1}(z, \bar{z})d^{-1} + a_{-2}(z, \bar{z})d^{-2} + ...,$ such that $a_j(z, \bar{z})$ is a polynomial in the curvature and its covariant derivatives at (z, \bar{z}) .

Interesting consequence: If ω is associated to the constant curvature metric on Σ , the previous family of textures have uniform topological charge, up to corrections which are smaller than any power of 1/d.

"Practical" questions: How to effectively construct such orthonormal bases of sections, when Σ has genus ≥ 2 ? Optimization of the exponentially small corrections in d with respect to the line bundle L?

Maps $\Sigma \to Gr(M, N)$ and rank M vector bundles (I)

We start from a rank M vector bundle \mathcal{V} over Σ , and a choice of N sections $s_i(x)$, $1 \le i \le N$ of \mathcal{V} , which generate the fiber \mathcal{V}_x at each $x \in \Sigma$.

Using local frames in open subsets U_{α} covering Σ , each section $s_i(x)$ may be seen as an *M*-component row-vector. These *N* rows form an $N \times M$ matrix $V^{(\alpha)}(x)$, and if $x \in U_{\alpha} \cap U_{\beta}$:

$$V^{(\alpha)}(x) = V^{(\beta)}(x)t^{(\beta\alpha)}(x)$$

where $t^{(\beta\alpha)}(x)$ are the transition functions of \mathcal{V} . The linear span in \mathbb{C}^N of the columns of $V^{(\alpha)}(x)$ form a well defined $f(x) \in \operatorname{Gr}(M, N)$. Elements of $\mathcal{V}_x \longleftrightarrow M$ -component row-vectors Elements of $f(x) \longleftrightarrow N$ -component column-vectors

$$\mathcal{V}_x \cong f(x)^*$$

Maps $\Sigma \to Gr(M, N)$ and rank M vector bundles (II)

Basic fact: there exists a 1 to 1 correspondence between:

)

- Maps $f: \Sigma \to \operatorname{Gr}(M, N)$
- Rank *M* vector bundles *V* over Σ, together with a choice of *N* sections of *V*, which generate the fiber *V_x* at each *x* ∈ Σ, modulo automorphisms of *V*.

$$\mathcal{V} \cong f^* \mathcal{T}^* \xrightarrow{\overline{f}} \mathcal{T}^*$$

$$s_i \left[1 \le i \le N \right] \quad f_i$$

$$\Sigma \xrightarrow{f} \operatorname{Gr}(M, N)$$

 \mathcal{T}^* : dual of tautological rank M vector bundle over $\operatorname{Gr}(M, N)$. For $V \in \operatorname{Gr}(M, N)$, $t_i(V)$ is the linear form on V defined by the *i*-th component in \mathbb{C}^N ($V \subset \mathbb{C}^N$).

Using the Plücker embedding of $\operatorname{Gr}(M,N)$ into $\mathbb{C}P(\tilde{N}-1)$

 $\tilde{N} = N!/(M!(N - M)!)$. Suggests to consider $i_{\mathcal{P}} f$, which is generated by the \tilde{N} sections $s_{i_1} \wedge ... \wedge s_{i_M}$ of Det \mathcal{V} . Main difficulty: An optimal texture $\Sigma \to \mathbb{C}P(\tilde{N} - 1)$ is not always of the form $i_{\mathcal{P}} f$!

Recipe for optimal $\Sigma \to \operatorname{Gr}(M, N)$ textures

- **1** Pick a rank *M* vector bundle \mathcal{V} over Σ
- **2** Choose *N* global sections of \mathcal{V} , encoded in an $N \times D$ matrix *A*
- Apply Plücker's embedding: i_P f is described by Ñ sections of Det V, encoded in an Ñ × Ď matrix Ä.
- Try to impose the optimality constraint for projective textures: $\tilde{A}^{\dagger}\tilde{A} = I_{\tilde{D}}$. Assuming that entries of $\tilde{A}^{\dagger}\tilde{A}$ are independent functions of those of A, this gives \tilde{D}^2 constraints.

SU(N)-invariant physical degrees of freedom are given by entries of $A^{\dagger}A$. This gives D^2 independent SU(N)-invariant physical degrees of freedom when $D \leq N$, and $2ND - N^2 < D^2$ degrees of freedom when D > N. Optimal textures are described by $D^2 - 2\mathcal{A}(\mathcal{V}) - \tilde{D}^2$ real parameters, where $\mathcal{A}(\mathcal{V})$ is the number of independent (over \mathbb{C}) automorphisms of \mathcal{V} .

Holomorphic maps from the sphere to Gr(M, N)

- Any rank M vector bundle V on the sphere decomposes as a direct sum of line bundles V = O(d₁) ⊕ O(d₂)... ⊕ O(d_M), with d₁ + d₂ + ... + d_M = d is the total topological charge (Grothendieck 1957).
- Sections of $\mathcal{O}(d)$ on S^2 form a complex space of dimension d+1 (spin S = d/2 representation of SU(2)), realized by polynomials in z with maximal degree d.
- From this, we get that D = d + M and $\tilde{D} = d + 1$
- For M = 2, A(V) = d₂ d₁ + 2 if d₁ < d₂, and A(V) = 3 if d₁ = d₂. If we choose d₁ and d₂ to minimize A(V) at fixed d, we predict 2d 3 SU(N)-invariant free parameters for constant topological charge textures (if N ≥ D = d + 2).

SU(N)-invariant deformation modes on the sphere

Assumptions

- \tilde{D}^2 constraints are independent
- Automorphisms of ${\mathcal V}$ generate ${\mathcal A}({\mathcal V})$ independent small deformations of $A^\dagger A$

$N \setminus d$	1	2	3	4	5	6	7	8	9	10
3	0	0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø
4	0	1	2	1	Ø	Ø	Ø	Ø	Ø	Ø
5	0	1	3	4	3	0	Ø	Ø	Ø	Ø
6	0	1	3	5	6	5	2	Ø	Ø	Ø
7	0	1	3	5	7	8	7	4	Ø	Ø
8	0	1	3	5	7	9	10	9	6	1
9	0	1	3	5	7	9	11	12	11	8
10	0	1	3	5	7	9	11	13	14	13

Holomorphic maps from the torus to Gr(M, N)

- There exist undecomposable vector bundles on a torus, which have been completely classified by Atiyah (1957).
- Their spaces of sections can be explicitely described in terms of θ functions and their derivatives, (Polishchuk & Zaslow, 1998).

• $D = \tilde{D} = d$ (Riemann-Roch).

- Some undecomposable bundles have no automorphisms $(\mathcal{A}(\mathcal{V}) = 0)$. Then, $\mathcal{A}^{\dagger}\mathcal{A} = I_d$ is a solution, and seems to be the only one. This happens for example if M and d are relatively prime. We therefore recover a situation very similar to M = 1.
- For some other undecomposable bundles, a simple counting argument suggests that in general, there are no solutions to $\tilde{A}^{\dagger}\tilde{A} = I_d$. However, for M = 2 and d even, D. Kovrizhin has found special solutions to $\tilde{A}^{\dagger}\tilde{A} = I_d$.

- Qualitative differences between M = 1 and $M \ge 2$. Main manifestation: existence of new SU(N)-invariant deformation modes on the sphere. Their physical interpretation remains unclear.
- On the torus, special role played by vector bundles without automorphisms. Related to the concept of stability, which plays a crucial role in many situations (existence of *Hermitian-Einstein metrics*, construction of moduli spaces,...)
- Other situations where getting a uniform topological density is useful: Chern band insulators, generation of artificial gauge fields in cold atom systems, optimization of quantum topological pumps...

Undecomposable holomorphic vector bundles on a torus

Wanted: Undecomposable vector bundle \mathcal{V} of rank M and degree d on the $(1, \tau)$ -torus. With $h = \operatorname{gcd}(M, d)$, we write (M, d) = h(M', d'). Then (Atiyah, 1957):

$$\mathcal{V}=\pi_*^{(M')}(L'\otimes F_h)$$

L': a line bundle of degree d' over the $(1, M'\tau)$ -torus. F_h : an undecomposable bundle of rank h and degree 0 over the $(1, M'\tau)$ -torus. $\pi_*^{(M')}$: projection from the $(1, M'\tau)$ -torus onto the $(1, \tau)$ -torus. Stable bundles correspond to h = 1.

Kähler manifolds

 \mathcal{M} complex manifold with local complex coordinates w_i . \mathcal{M} is equipped with an Hermitian metric

$$ds^2 = \sum_{ij} h_{ij} \, dw_i d \, ar w_j$$

such that the corresponding associated (1,1) form

$$\omega = rac{i}{2} \sum_{ij} h_{ij} \, dw_i \wedge d \, ar w_j$$

is closed.

This implies that, locally, the metric derives from a Kähler potential Φ , i.e. that:

$$h_{ij} = \frac{\partial^2 \Phi}{\partial w_i \partial \bar{w}_j}$$

Grassmannians are Kähler manifolds

Choice of local coordinates on Gr(M, N): Pick a rank $M, N \times M$ matrix V. Then it has at least one non-zero $M \times M$ minor determinant. Assuming this is the first one, we get a dense open subset of Gr(M, N). $V = \begin{pmatrix} V_u \\ V_d \end{pmatrix}$. Multiplying V on the right by V_u^{-1} leads to the same M-dimensional subspace. This changes Vinto

$$\left(\begin{array}{c} I_m \\ W \end{array} \right)$$

where $W = V_d V_u^{-1}$ is an arbitrary $(N - M) \times M$ matrix.

Kähler potential:

$$\Phi(W, W^{\dagger}) = rac{1}{\pi} \log \det(I + W^{\dagger}W)$$

Energy functionals for maps to Kähler manifolds

Classical energy functional for a map $(x, y) \rightarrow (w_i)$:

$$E = \frac{g}{2} \int d^2 \mathbf{r} \ h_{ij}(w(\mathbf{r}), \bar{w}(\mathbf{r})) \nabla w_i . \nabla \bar{w}_j$$
$$E = g \int d^2 \mathbf{r} \ h_{ij}(\partial_z w_i \partial_{\bar{z}} \bar{w}_j + \partial_{\bar{z}} w_i \partial_z \bar{w}_j)$$

The topological charge density is defined by:

$$Q = \int d^2 \mathbf{r} \, f^* \omega$$

Explicitely:

$$Q = \int d^2 \mathbf{r} \ h_{ij} (\partial_z w_i \partial_{\bar{z}} \bar{w}_j - \partial_{\bar{z}} w_i \partial_z \bar{w}_j)$$

 $d\omega = 0$ implies that Q does not change to first order under any infinitesimal variation of the map f, so Q depends only on the homotopy class of f. In many interesting situations, Q takes only integer values.

Bogomolnyi inequality and its consequences

$$E = g(A + B)$$

$$Q = A - B$$

$$A = \int d^2 \mathbf{r} \ h_{ij} \partial_z w_i \partial_{\bar{z}} \bar{w}_j \quad B = \int d^2 \mathbf{r} \ h_{ij} \partial_{\bar{z}} w_i \partial_z \bar{w}_j$$

Since $h_{ij} = \bar{h}_{ji}$ is positive definite, A and B are both real and non-negative. Then $A + B \ge |A - B|$, so:

$$E \ge g|Q|$$

Minimal energy configurations with fixed Q: If Q > 0, B = 0, so $\partial_{\overline{z}} w_i = 0$: minimal configurations are holomorphic.

If Q < 0, A = 0, so $\partial_z w_i = 0$: minimal configurations are anti-holomorphic.