Topological electrostatics

Benoît Douçot
Dmitry Kovrizhin, Roderich Moessner

June 20, 2022

Plan

- Quantum Hall ferromagnets
- Skyrmion lattices in Quantum Hall ferromagnets
- Topological electrostatics

Spin Skyrmions

(Picture from Wikipedia)

Multi-Component Systems (Internal Degrees of Freedom)

(A) physical spin: $\mathrm{SU}(2)$

(B) bilayer: $\mathrm{SU}(2)$ isospin

two-fold valley degeneracy $\rightarrow \mathrm{SU}(2)$ isospin
spin + isospin : SU(4)

Realistic anisotropies

Hamiltonian can approximately have high $S U(4)$ symmetry

- Zeeman anisotropy: $S U(2) \rightarrow U(1)$
- Graphene: valley weakly split, $O\left(a / I_{B}\right)$
- Bilayers: charging energy: $S U(2) \rightarrow U(1)$; neglect tunnelling

Quantum Hall ferromagnets

N internal states (spin, valley, layer indices, e. g. $N=4$ for graphene).
Integer filling factor M with $1 \leq M \leq N-1$.
Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small g factor). This selects a ferromagnetic state

Main question: What happens when $\nu=M+\delta \nu, \delta \nu \ll 1$?

Quantum Hall ferromagnets

N internal states (spin, valley, layer indices, e. g. $N=4$ for graphene).
Integer filling factor M with $1 \leq M \leq N-1$.
Large magnetic field \rightarrow Projection onto the lowest Landau level (LLL). Assume that largest sub-leading term is given by Coulomb interactions (small g factor). This selects a ferromagnetic state

Main question: What happens when $\nu=M+\delta \nu, \delta \nu \ll 1$?
Ferromagnetic state is replaced by slowly varying textures (e. g. Skyrmions lattices for $M=1$).

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993), Brey, Fertig, Côté and MacDonald, PRL 75, 2562 (1995)

Skyrmion crystals near $\nu=1$

Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL 75, 2562 (1995)
Specific heat peak: Bayot et al. PRL 76, 4584 (1996) and PRL 79, 1718 (1997)

Increase in NMR relaxation: Gervais et al. PRL 94, 196803 (2005)
Raman spectroscopy: Gallais et al, PRL 100, 086806 (2008)
Microwave spectroscopy: Han Zhu et al. PRL 104, 226801 (2010)

Recent experiments (2020)

LETTERS

Solids of quantum Hall skyrmions in graphene

H. Zhou \odot^{1}, H. Polshyn \odot^{1}, T. Taniguchi ${ }^{2}$, K. Watanabe \odot^{2} and A. F. Young ${ }^{()^{1 *}}$

Example of entangled textures $(N=4, M=1)$

Plan

- Quantum Hall ferromagnets
- Skyrmion lattices in Quantum Hall ferromagnets
- Topological electrostatics

Description of uniform states

Work in lowest Landau level with $\nu=M, 1 \leq M \leq N-1$. We choose an M-dimensional subspace in \mathbb{C}^{N}, which corresponds to the M occupied internal states. Explicitely, this subspace is generated by the columns of an $N \times M$ matrix V.
Consider now a complete basis $\chi^{(\alpha)}(\mathbf{r})$ in the LLL (orbital degree of freedom). A ferromagnetic state is obtained by taking the Slater determinant $\left|\mathcal{S}_{V}\right\rangle$ built from single particle states of the form $\left|\psi^{(i \alpha)}\right\rangle,(1 \leq i \leq M)$, given by:

$$
\psi_{a}^{(i \alpha)}(r)=V_{a i} \chi^{(\alpha)}(r), \quad 1 \leq a \leq N
$$

Terminology: The continuous set of M-dimensional subspaces in \mathbb{C}^{N} is a smooth complex manifold of dimension $(N-M) M$, called the Grassmannian $\operatorname{Gr}(M, N)$.

Slater determinants in the LLL associated to smooth

 textures (I)Physical space manifold: $\Sigma=\mathbb{R}^{2}$
Textures: Smooth maps $\Sigma \rightarrow \mathcal{M}=\operatorname{Gr}(M, N)$
Explicitely: Pick an $N \times M$ matrix $V_{i j}(\mathbf{r})$ of maps.
This defines a local projector in internal (generalized spin space)
$P_{V}(\mathbf{r})=V(\mathbf{r})\left(V^{\dagger}(\mathbf{r}) V(\mathbf{r})\right)^{-1} V^{\dagger}(\mathbf{r})$.
Global symmetry: $V(\mathbf{r}) \rightarrow g V(\mathbf{r})$ with $g \in S U(N)$. Spontaneously broken in Skyrmion crystals, giving rise to Goldstone modes, besides phonon modes.
Local gauge symmetry: $V(\mathbf{r}) \rightarrow V(\mathbf{r}) \wedge(r)$ with $\Lambda(r) \in S U(M)$.
Key operation: projection $\mathcal{P}_{\text {LLL }}$ onto the lowest Landau level. The quantum state $\left|\mathcal{S}_{V}\right\rangle$ associated to the classical map is the ground-state of the auxiliary single-particle Hamiltonian:

$$
H_{\mathrm{aux}, V}=-\mathcal{P}_{L L L}\left(\int d^{2} \mathbf{r} \sum_{a, b} P_{V}(\mathbf{r})_{a b} \Psi_{a}^{\dagger}(\mathbf{r}) \Psi_{b}(\mathbf{r})\right) \mathcal{P}_{L L L}
$$

Slater determinants in the LLL associated to smooth

 textures (II)Main effect of $\mathcal{P}_{\text {LLL }}$: (Moon et al. (1995), Pasquier (2000), ...)

$$
\begin{aligned}
n_{\mathrm{el}}(\mathbf{r}) & =\frac{M}{2 \pi /^{2}}-Q(\mathbf{r})+O\left(l^{2}\right) \\
N_{\mathrm{el}} & =M N_{\Phi}-Q_{\mathrm{top}} \rightarrow \text { CONSTRAINT }
\end{aligned}
$$

Energy functional:

$$
E_{\mathrm{tot}}=E_{\mathrm{loc}}+E_{\mathrm{non}-\mathrm{loc}}
$$

$E_{\text {loc }}$: exchange energy (generalized ferromagnet), given by a non-linear σ model energy functional.
$E_{\text {non-loc }}=\frac{e^{2}}{8 \pi \epsilon} \int d^{2} \mathbf{r} \int d^{2} \mathbf{r}^{\prime} \frac{Q(\mathbf{r}) Q\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}$.

Slater determinants in the LLL associated to smooth

 textures (III)$$
E_{\mathrm{tot}}=E_{\mathrm{loc}}+E_{\mathrm{non}-\mathrm{loc}}
$$

If filling factor is close to $M, E_{\text {non-loc }} \ll E_{\text {loc }}$. To find optimal textures, we can therefore:
(1) Minimize $E_{\text {loc }}$ in the presence of the $N_{\text {el }}=M N_{\phi}-Q_{\text {top }}$ constraint. This leads to a continuous family of degenerate configurations, described by holomorphic maps $\Sigma \rightarrow \operatorname{Gr}(M, N)$.
(2) Lift this degeneracy by minimizing $E_{\text {non }-l o c}$ within this degenerate family. Physically, this favors textures in which the topological charge density is as uniform as possible: this may be described as a problem in topological electrostatics.

- Quantum Hall ferromagnets
- Skyrmion lattices in Quantum Hall ferromagnets
- Topological electrostatics

Holomorphic maps from the sphere to $\mathbb{C P}(N-1)(I)$

$S^{2} \cong \mathbb{C P}(1) \cong \mathbb{C} \cup\{\infty\}$ so we use one coordinate $z \in \mathbb{C}$. Kähler potential on the sphere: $\Phi=\frac{1}{\pi} \log \left(1+|z|^{2}\right)$
Volume element: $\omega=\frac{d x \wedge d y}{\pi\left(1+|z|^{2}\right)^{2}}$
Holomorphic maps $f: S^{2} \rightarrow \mathbb{C P}(N-1)$: collections of N polynomials $P_{1}(z), \ldots, P_{N}(z)$.
Topological charge: number of intersection points of $f\left(S^{2}\right)$ with an arbitrary hyperplane in $\mathbb{C P}(N-1)=$ maximal degree d of
$P_{1}(z), \ldots, P_{N}(z)$.
Topological charge density:

$$
Q(z, \bar{z})=\left(1+|z|^{2}\right)^{2} \partial_{z} \partial_{\bar{z}} \log \left(\sum_{i=1}^{N}\left|P_{i}(z)\right|^{2}\right)
$$

$Q(z, \bar{z})$ is constant when:

$$
\sum_{i=1}^{N}\left|P_{i}(z)\right|^{2}=\left(1+|z|^{2}\right)^{d}
$$

Hermitian scalar product on degree d polynomials:

$$
(P, Q)_{d}=\frac{d+1}{\pi} \int d^{2} \mathbf{r} \frac{\overline{P(z)} Q(z)}{\left(1+|z|^{2}\right)^{d+2}}
$$

Orthonormal basis: $e_{p}(z)=\binom{d}{p}^{1 / 2} z^{p}$
General texture of degree $d: P_{i}(z)=\sum_{i=0}^{d} A_{i j} e_{j}(z)$ $Q(z, \bar{z})$ is constant when: $A^{\dagger} A=I_{d+1}$
If $d \geq N$: No solution
If $d \leq N-2$: many solutions, but not all components of the maps are linearly independent.
If $d=N-1: A A^{\dagger}=I_{N}=A^{\dagger} A$, so $\left(P_{i}, P_{j}\right)_{d}=\delta_{i j}$.
Textures with uniform topological charge density \Leftrightarrow Components form an orthonormal basis.

0 There exists a unique solution, up to global $S U(N)$ transformations, giving a uniform topological charge density
\emptyset No such solution exists

$$
\begin{gathered}
\theta(z+\gamma)=e^{a_{\gamma} z+b_{\gamma}} \theta(z) \\
\left(\theta, \theta^{\prime}\right)_{d}=\int d^{2} r \exp \left(-\frac{\pi d|z|^{\prime}}{\left|\gamma_{1} \wedge \gamma_{2}\right|}\right) \overline{\theta(z)} \theta^{\prime}(z)
\end{gathered}
$$

Optimal textures
$(d=N)$
$|\Psi(z)\rangle=\left(\begin{array}{c}\theta_{0}(z) \\ \theta_{1}(z) \\ \cdot \\ \cdot \\ \cdot \\ \theta_{d-1}(z)\end{array}\right)$

$\left(\theta_{i}, \theta_{j}\right)_{d}=\delta_{i j}$

Holomorphic maps from the torus to $\mathbb{C P}(N-1)$ (II)

$$
d=N=2
$$

Holomorphic maps from the torus to $\mathbb{C P}(N-1)$ (III)

$$
d=N=4
$$

B. Douçot

Holomorphic maps from the torus to $\mathbb{C P}(N-1)$ (IV)

Spatial variations of topological charge: $Q(r)$ is always γ_{1} / d and γ_{2} / d periodic. Unlike on the sphere, $Q(r)$ is not exactly constant.
At large d the modulation contains mostly the lowest harmonic, and its amplitude decays exponentially with d.
Large d behavior for a square lattice:
$Q(x, y) \simeq \frac{2}{\pi}-4 d e^{-\pi d / 2}\left[\cos (2 \sqrt{d} x)-2 e^{-\pi d / 2} \cos ^{2}(4 \sqrt{d} x)+(x \leftrightarrow y)\right]+\ldots$
Only the triangular lattice seems to yield a true local energy minimum. This has been evidenced by computing eigenfrequencies of small deformation modes.
B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)

Holomorphic maps from Σ to $\mathbb{C P}(N-1)(I)$

Components of a map $f: \Sigma \rightarrow \mathbb{C P}(N-1)$ were polynomials on the sphere and θ functions on the torus. Note that polynomials have poles at $z \rightarrow \infty$, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ, and choose the components of the maps $s_{j}(z)$ as global holomorphic sections of L, for $1 \leq j \leq N$.

Recipe for optimal textures: $N=$ dimension of the space of global holomorphic sections of L. Choose components forming an orthonormal basis for a well chosen hermitian product.

Holomorphic maps from Σ to $\mathbb{C P}(N-1)$ (II)

Geometric quantization recipe for the hermitian product ω : volume form associated to constant curvature metric on Σ h^{d} : hermitian metric on fibers of L^{d} whose curvature form equals $-d(2 \pi i) \omega$

$$
\left(s, s^{\prime}\right)_{L, d}=\int_{\Sigma} h^{d}\left(s(x), s^{\prime}(x)\right) \omega(x)
$$

Topological charge form: $\omega_{\text {top }}-\omega=\frac{1}{\pi} \partial_{z} \partial_{\bar{z}} \log B(z, \bar{z})$.
$B(z, \bar{z})_{L, d}=\sum_{j=1}^{N} h^{d}\left(s_{j}(z), s_{j}(z)\right)$
For an orthonormal basis $B(z, \bar{z})$ is the Bergman kernel, whose large d asymptotics has been studied a lot in the 90 's.

Holomorphic maps from \sum to $\mathbb{C P}(N-1)$ (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin, Lu, ...(1990 to 2000)):
$B(z, \bar{z})=d+a_{0}(z, \bar{z})+a_{-1}(z, \bar{z}) d^{-1}+a_{-2}(z, \bar{z}) d^{-2}+\ldots$, such that $a_{j}(z, \bar{z})$ is a polynomial in the curvature and its covariant derivatives at (z, \bar{z}).

Interesting consequence: If ω is associated to the constant curvature metric on Σ, the previous family of textures have uniform topological charge, up to corrections which are smaller than any power of $1 / d$.
"Practical" questions: How to effectively construct such orthonormal bases of sections, when Σ has genus ≥ 2 ? Optimization of the exponentially small corrections in d with respect to the line bundle L ?

Maps $\Sigma \rightarrow \operatorname{Gr}(M, N)$ and rank M vector bundles (I)

We start from a rank M vector bundle \mathcal{V} over Σ, and a choice of N sections $s_{i}(x), 1 \leq i \leq N$ of \mathcal{V}, which generate the fiber \mathcal{V}_{x} at each $x \in \Sigma$.
Using local frames in open subsets U_{α} covering Σ, each section $s_{i}(x)$ may be seen as an M-component row-vector. These N rows form an $N \times M$ matrix $V^{(\alpha)}(x)$, and if $x \in U_{\alpha} \cap U_{\beta}$:

$$
V^{(\alpha)}(x)=V^{(\beta)}(x) t^{(\beta \alpha)}(x)
$$

where $t^{(\beta \alpha)}(x)$ are the transition functions of \mathcal{V}.
The linear span in \mathbb{C}^{N} of the columns of $V^{(\alpha)}(x)$ form a well defined $f(x) \in \operatorname{Gr}(M, N)$.
Elements of $\mathcal{V}_{x} \longleftrightarrow M$-component row-vectors
Elements of $f(x) \longleftrightarrow N$-component column-vectors

$$
\mathcal{V}_{x} \cong f(x)^{*}
$$

Maps $\Sigma \rightarrow \operatorname{Gr}(M, N)$ and rank M vector bundles (II)

Basic fact: there exists a 1 to 1 correspondence between:

- Maps $f: \Sigma \rightarrow \operatorname{Gr}(M, N)$
- Rank M vector bundles \mathcal{V} over Σ, together with a choice of N sections of \mathcal{V}, which generate the fiber \mathcal{V}_{x} at each $x \in \Sigma$, modulo automorphisms of \mathcal{V}.

\mathcal{T}^{*} : dual of tautological rank M vector bundle over $\operatorname{Gr}(M, N)$. For $V \in \operatorname{Gr}(M, N), t_{i}(V)$ is the linear form on V defined by the i-th component in $\mathbb{C}^{N}\left(V \subset \mathbb{C}^{N}\right)$.

Using the Plücker embedding of $\operatorname{Gr}(M, N)$ into $\mathbb{C} P(\tilde{N}-1)$

$\tilde{N}=N!/(M!(N-M)!)$. Suggests to consider $i_{\mathcal{P}} f$, which is generated by the \tilde{N} sections $s_{i_{1}} \wedge \ldots \wedge s_{i_{M}}$ of Det \mathcal{V}. Main difficulty: An optimal texture $\Sigma \rightarrow \mathbb{C} P(\tilde{N}-1)$ is not always of the form $i_{\mathcal{P}} f$!

Recipe for optimal $\Sigma \rightarrow \operatorname{Gr}(M, N)$ textures

(1) Pick a rank M vector bundle \mathcal{V} over Σ
(2) Choose N global sections of \mathcal{V}, encoded in an $N \times D$ matrix A
(3) Apply Plücker's embedding: $i_{\mathcal{P}} f$ is described by \tilde{N} sections of Det \mathcal{V}, encoded in an $\tilde{N} \times \tilde{D}$ matrix \tilde{A}.
(9) Try to impose the optimality constraint for projective textures: $\tilde{A}^{\dagger} \tilde{A}=I_{\tilde{D}}$. Assuming that entries of $\tilde{A}^{\dagger} \tilde{A}$ are independent functions of those of A, this gives \tilde{D}^{2} constraints.
$S U(N)$-invariant physical degrees of freedom are given by entries of $A^{\dagger} A$. This gives D^{2} independent $S U(N)$-invariant physical degrees of freedom when $D \leq N$, and $2 N D-N^{2}<D^{2}$ degrees of freedom when $D>N$. Optimal textures are described by $D^{2}-2 \mathcal{A}(\mathcal{V})-\tilde{D}^{2}$ real parameters, where $\mathcal{A}(\mathcal{V})$ is the number of independent (over \mathbb{C}) automorphisms of \mathcal{V}.

- Any rank M vector bundle \mathcal{V} on the sphere decomposes as a direct sum of line bundles $\mathcal{V}=\mathcal{O}\left(d_{1}\right) \oplus \mathcal{O}\left(d_{2}\right) \ldots \oplus \mathcal{O}\left(d_{M}\right)$, with $d_{1}+d_{2}+\ldots+d_{M}=d$ is the total topological charge (Grothendieck 1957).
- Sections of $\mathcal{O}(d)$ on S^{2} form a complex space of dimension $d+1(\operatorname{spin} S=d / 2$ representation of $S U(2))$, realized by polynomials in z with maximal degree d.
- From this, we get that $D=d+M$ and $\tilde{D}=d+1$
- For $M=2, \mathcal{A}(\mathcal{V})=d_{2}-d_{1}+2$ if $d_{1}<d_{2}$, and $\mathcal{A}(\mathcal{V})=3$ if $d_{1}=d_{2}$. If we choose d_{1} and d_{2} to minimize $\mathcal{A}(\mathcal{V})$ at fixed d, we predict $2 d-3 S U(N)$-invariant free parameters for constant topological charge textures (if $N \geq D=d+2$).

SU(N)-invariant deformation modes on the sphere

Assumptions

- \tilde{D}^{2} constraints are independent
- Automorphisms of \mathcal{V} generate $\mathcal{A}(\mathcal{V})$ independent small deformations of $A^{\dagger} A$

$N \backslash d$	1	2	3	4	5	6	7	8	9	10
3	0	0	\emptyset							
4	0	1	2	1	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset
5	0	1	3	4	3	0	\emptyset	\emptyset	\emptyset	\emptyset
6	0	1	3	5	6	5	2	\emptyset	\emptyset	\emptyset
7	0	1	3	5	7	8	7	4	\emptyset	\emptyset
8	0	1	3	5	7	9	10	9	6	1
9	0	1	3	5	7	9	11	12	11	8
10	0	1	3	5	7	9	11	13	14	13

Holomorphic maps from the torus to $\operatorname{Gr}(M, N)$

- There exist undecomposable vector bundles on a torus, which have been completely classified by Atiyah (1957).
- Their spaces of sections can be explicitely described in terms of θ functions and their derivatives, (Polishchuk \& Zaslow, 1998).
- $D=\tilde{D}=d$ (Riemann-Roch).
- Some undecomposable bundles have no automorphisms $(\mathcal{A}(\mathcal{V})=0)$. Then, $A^{\dagger} A=I_{d}$ is a solution, and seems to be the only one. This happens for example if M and d are relatively prime. We therefore recover a situation very similar to $M=1$.
- For some other undecomposable bundles, a simple counting argument suggests that in general, there are no solutions to $\tilde{A}^{\dagger} \tilde{A}=I_{d}$. However, for $M=2$ and d even, D. Kovrizhin has found special solutions to $\tilde{A}^{\dagger} \tilde{A}=I_{d}$.
- Qualitative differences between $M=1$ and $M \geq 2$. Main manifestation: existence of new $S U(N)$-invariant deformation modes on the sphere. Their physical interpretation remains unclear.
- On the torus, special role played by vector bundles without automorphisms. Related to the concept of stability, which plays a crucial role in many situations (existence of Hermitian-Einstein metrics, construction of moduli spaces,...)
- Other situations where getting a uniform topological density is useful: Chern band insulators, generation of artificial gauge fields in cold atom systems, optimization of quantum topological pumps...

Undecomposable holomorphic vector bundles on a torus

Wanted: Undecomposable vector bundle \mathcal{V} of rank M and degree d on the $(1, \tau)$-torus. With $h=\operatorname{gcd}(M, d)$, we write $(M, d)=h\left(M^{\prime}, d^{\prime}\right)$. Then (Atiyah, 1957):

$$
\mathcal{V}=\pi_{*}^{\left(M^{\prime}\right)}\left(L^{\prime} \otimes F_{h}\right)
$$

L^{\prime} : a line bundle of degree d^{\prime} over the ($1, M^{\prime} \tau$)-torus.
F_{h} : an undecomposable bundle of rank h and degree 0 over the ($1, M^{\prime} \tau$)-torus.
$\pi_{*}^{\left(M^{\prime}\right)}$: projection from the $\left(1, M^{\prime} \tau\right)$-torus onto the $(1, \tau)$-torus.
Stable bundles correspond to $h=1$.

Kähler manifolds

\mathcal{M} complex manifold with local complex coordinates w_{i}.
\mathcal{M} is equipped with an Hermitian metric

$$
d s^{2}=\sum_{i j} h_{i j} d w_{i} d \bar{w}_{j}
$$

such that the corresponding associated $(1,1)$ form

$$
\omega=\frac{i}{2} \sum_{i j} h_{i j} d w_{i} \wedge d \bar{w}_{j}
$$

is closed.
This implies that, locally, the metric derives from a Kähler potential Φ, i.e. that:

$$
h_{i j}=\frac{\partial^{2} \Phi}{\partial w_{i} \partial \bar{w}_{j}}
$$

Grassmannians are Kähler manifolds

Choice of local coordinates on $\operatorname{Gr}(M, N)$: Pick a rank $M, N \times M$ matrix V. Then it has at least one non-zero $M \times M$ minor determinant. Assuming this is the first one, we get a dense open subset of $\operatorname{Gr}(M, N) . V=\binom{V_{u}}{V_{d}}$. Multiplying V on the right by V_{u}^{-1} leads to the same M-dimensional subspace. This changes V into

$$
\binom{I_{m}}{W}
$$

where $W=V_{d} V_{u}^{-1}$ is an arbitrary $(N-M) \times M$ matrix.
Kähler potential:

$$
\Phi\left(W, W^{\dagger}\right)=\frac{1}{\pi} \log \operatorname{det}\left(I+W^{\dagger} W\right)
$$

Classical energy functional for a map $(x, y) \rightarrow\left(w_{i}\right)$:

$$
\begin{aligned}
& E=\frac{g}{2} \int d^{2} \mathbf{r} h_{i j}(w(\mathbf{r}), \bar{w}(\mathbf{r})) \nabla w_{i} \cdot \nabla \bar{w}_{j} \\
& E=g \int d^{2} \mathbf{r} h_{i j}\left(\partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j}+\partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}\right)
\end{aligned}
$$

The topological charge density is defined by:

$$
Q=\int d^{2} r f^{*} \omega
$$

Explicitely:

$$
Q=\int d^{2} r h_{i j}\left(\partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j}-\partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}\right)
$$

$d \omega=0$ implies that Q does not change to first order under any infinitesimal variation of the map f, so Q depends only on the homotopy class of f. In many interesting situations, Q takes only integer values.

Bogomolnyi inequality and its consequences

$$
\begin{gathered}
E=g(A+B) \\
Q=A-B \\
A=\int d^{2} \mathbf{r} h_{i j} \partial_{z} w_{i} \partial_{\bar{z}} \bar{w}_{j} \quad B=\int d^{2} \mathbf{r} h_{i j} \partial_{\bar{z}} w_{i} \partial_{z} \bar{w}_{j}
\end{gathered}
$$

Since $h_{i j}=\bar{h}_{j i}$ is positive definite, A and B are both real and non-negative. Then $A+B \geq|A-B|$, so:

$$
E \geq g|Q|
$$

Minimal energy configurations with fixed Q :
If $Q>0, B=0$, so $\partial_{\bar{z}} w_{i}=0$: minimal configurations are holomorphic.
If $Q<0, A=0$, so $\partial_{z} w_{i}=0$: minimal configurations are anti-holomorphic.

