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Spin Skyrmions

π2(S2) = Z

(Picture from Wikipedia)
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Multi-Component Systems (Internal Degrees of Freedom)
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Realistic anisotropies

Hamiltonian can approximately have high SU(4) symmetry
Zeeman anisotropy: SU(2)→ U(1)

Graphene: valley weakly split, O(a/lB)

Bilayers: charging energy: SU(2)→ U(1); neglect tunnelling
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Quantum Hall ferromagnets

N internal states (spin, valley, layer indices, e. g. N = 4 for
graphene).
Integer filling factor M with 1 ≤ M ≤ N − 1.
Large magnetic field → Projection onto the lowest Landau level
(LLL). Assume that largest sub-leading term is given by Coulomb
interactions (small g factor). This selects a ferromagnetic state

Main question: What happens when ν = M + δν, δν << 1 ?

Ferromagnetic state is replaced by slowly varying textures (e. g.
Skyrmions lattices for M = 1).

Sondhi, Karlhede, Kivelson, Rezayi, PRB 47, 16419, (1993), Brey,
Fertig, Côté and MacDonald, PRL 75, 2562 (1995)
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Skyrmion crystals near ν = 1

Theoretical prediction: Brey, Fertig, Côté and MacDonald, PRL 75,
2562 (1995)

Specific heat peak: Bayot et al. PRL 76, 4584 (1996) and PRL 79,
1718 (1997)

Increase in NMR relaxation: Gervais et al. PRL 94, 196803 (2005)

Raman spectroscopy: Gallais et al, PRL 100, 086806 (2008)

Microwave spectroscopy: Han Zhu et al. PRL 104, 226801 (2010)
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Recent experiments (2020)
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Example of entangled textures (N = 4, M = 1)

Bourassa et al, Phys. Rev. B 74, 195320 (2006)
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Description of uniform states

Work in lowest Landau level with ν = M, 1 ≤ M ≤ N − 1. We
choose an M-dimensional subspace in CN , which corresponds to
the M occupied internal states. Explicitely, this subspace is
generated by the columns of an N ×M matrix V .

Consider now a complete basis χ(α)(r) in the LLL (orbital degree of
freedom). A ferromagnetic state is obtained by taking the Slater
determinant |SV 〉 built from single particle states of the form
|Ψ(iα)〉, (1 ≤ i ≤ M), given by:

Ψ
(iα)
a (r) = Vai χ

(α)(r), 1 ≤ a ≤ N

Terminology: The continuous set of M-dimensional subspaces in

CN is a smooth complex manifold of dimension (N −M)M, called
the Grassmannian Gr(M,N).
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Slater determinants in the LLL associated to smooth
textures (I)

Physical space manifold: Σ = R2

Textures: Smooth maps Σ→M = Gr(M,N)
Explicitely: Pick an N ×M matrix Vij(r) of maps.
This defines a local projector in internal (generalized spin space)
PV (r) = V (r)(V †(r)V (r))−1V †(r).
Global symmetry:V (r)→ gV (r) with g ∈ SU(N). Spontaneously
broken in Skyrmion crystals, giving rise to Goldstone modes,
besides phonon modes.
Local gauge symmetry:V (r)→ V (r)Λ(r) with Λ(r) ∈ SU(M).

Key operation: projection PLLL onto the lowest Landau level.
The quantum state |SV 〉 associated to the classical map is the
ground-state of the auxiliary single-particle Hamiltonian:

Haux,V = −PLLL

∫ d2r
∑
a,b

PV (r)abΨ†a(r)Ψb(r)

PLLL
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Slater determinants in the LLL associated to smooth
textures (II)

Main effect of PLLL: (Moon et al. (1995), Pasquier (2000),...)

nel(r) =
M

2πl2
− Q(r) + O(l2)

Nel = MNΦ − Qtop → CONSTRAINT

Energy functional:

Etot = Eloc + Enon−loc

Eloc: exchange energy (generalized ferromagnet), given by a
non-linear σ model energy functional.
Enon−loc = e2

8πε

∫
d2r

∫
d2r′Q(r)Q(r′)

|r−r′| .
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Slater determinants in the LLL associated to smooth
textures (III)

Etot = Eloc + Enon−loc

If filling factor is close to M, Enon−loc << Eloc. To find optimal
textures, we can therefore:

1 Minimize Eloc in the presence of the Nel = MNΦ − Qtop
constraint. This leads to a continuous family of degenerate
configurations, described by holomorphic maps
Σ→ Gr(M,N).

2 Lift this degeneracy by minimizing Enon−loc within this
degenerate family. Physically, this favors textures in which the
topological charge density is as uniform as possible: this may
be described as a problem in topological electrostatics.
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Holomorphic maps from the sphere to CP(N − 1) (I)

S2 ∼= CP(1) ∼= C ∪ {∞} so we use one coordinate z ∈ C.
Kähler potential on the sphere: Φ = 1

π log(1 + |z |2)

Volume element: ω = dx∧dy
π(1+|z|2)2

Holomorphic maps f : S2 → CP(N − 1): collections of N
polynomials P1(z), ...,PN(z).
Topological charge: number of intersection points of f (S2) with an
arbitrary hyperplane in CP(N − 1) = maximal degree d of
P1(z), ...,PN(z).
Topological charge density:

Q(z , z̄) = (1 + |z |2)2∂z∂z̄ log(
N∑
i=1

|Pi (z)|2)

Q(z , z̄) is constant when:
N∑
i=1

|Pi (z)|2 = (1 + |z |2)d
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Holomorphic maps from the sphere to CP(N − 1) (II)

Hermitian scalar product on degree d polynomials:

(P,Q)d =
d + 1
π

∫
d2r

P(z)Q(z)

(1 + |z |2)d+2

Orthonormal basis: ep(z) =

(
d
p

)1/2

zp

General texture of degree d : Pi (z) =
∑d

i=0 Aijej(z)
Q(z , z̄) is constant when: A†A = Id+1
If d ≥ N: No solution
If d ≤ N − 2: many solutions, but not all components of the maps
are linearly independent.
If d = N − 1: AA† = IN = A†A, so (Pi ,Pj)d = δij .
Textures with uniform topological charge density ⇔ Components
form an orthonormal basis.
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Holomorphic maps from the sphere to CP(N − 1) (III)

d

N

0

∅

0 There exists a unique solution, up to global SU(N)
transformations, giving a uniform topological charge density
∅ No such solution exists
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Holomorphic maps from the torus to CP(N − 1) (I)

θ(z + γ) = eaγz+bγθ(z)

(θ, θ′)d =
∫
d2r exp(− πd |z|2

|γ1∧γ2|)θ(z)θ′(z)

Optimal textures
(d = N)

|Ψ(z)〉 =



θ0(z)
θ1(z)
.
.
.

θd−1(z)


(θi , θj)d = δij

Pattern of zeros (d=4)

γ1

γ2
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Holomorphic maps from the torus to CP(N − 1) (II)

d = N = 2
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Holomorphic maps from the torus to CP(N − 1) (III)

d = N = 4
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Holomorphic maps from the torus to CP(N − 1) (IV)

Spatial variations of topological charge: Q(r) is always γ1/d and
γ2/d periodic. Unlike on the sphere, Q(r) is not exactly constant.

At large d the modulation contains mostly the lowest harmonic,
and its amplitude decays exponentially with d .

Large d behavior for a square lattice:

Q(x , y) ' 2
π
−4de−πd/2[cos(2

√
dx)−2e−πd/2 cos2(4

√
dx)+(x ↔ y)]+...

Only the triangular lattice seems to yield a true local energy
minimum. This has been evidenced by computing eigenfrequencies
of small deformation modes.

B. Douçot, D. Kovrizhin, R. Moessner, PRL 110, 186802 (2013)
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Holomorphic maps from Σ to CP(N − 1) (I)

Components of a map f : Σ→ CP(N − 1) were polynomials on the
sphere and θ functions on the torus. Note that polynomials have
poles at z →∞, and θ functions are multivalued.

More general construction: Pick a line bundle L over Σ, and choose
the components of the maps sj(z) as global holomorphic sections of
L, for 1 ≤ j ≤ N.

Recipe for optimal textures: N = dimension of the space of global
holomorphic sections of L. Choose components forming an
orthonormal basis for a well chosen hermitian product.
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Holomorphic maps from Σ to CP(N − 1) (II)

Geometric quantization recipe for the hermitian product
ω : volume form associated to constant curvature metric on Σ
hd : hermitian metric on fibers of Ld whose curvature form equals
−d(2πi)ω

(s, s ′)L,d =

∫
Σ
hd(s(x), s ′(x))ω(x)

Topological charge form: ωtop − ω = 1
π∂z∂z̄ logB(z , z̄).

B(z , z̄)L,d =
∑N

j=1 h
d(sj(z), sj(z))

For an orthonormal basis B(z , z̄) is the Bergman kernel, whose
large d asymptotics has been studied a lot in the 90’s.
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Holomorphic maps from Σ to CP(N − 1) (III)

Bergman kernel asymptotics (Tian, Yau, Zelditch, Catlin,
Lu,...(1990 to 2000)):
B(z , z̄) = d + a0(z , z̄) + a−1(z , z̄)d−1 + a−2(z , z̄)d−2 + ..., such
that aj(z , z̄) is a polynomial in the curvature and its covariant
derivatives at (z , z̄).

Interesting consequence: If ω is associated to the constant
curvature metric on Σ, the previous family of textures have uniform
topological charge, up to corrections which are smaller than any
power of 1/d .

“Practical” questions: How to effectively construct such
orthonormal bases of sections, when Σ has genus ≥ 2 ?
Optimization of the exponentially small corrections in d with
respect to the line bundle L ?
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Maps Σ→ Gr(M ,N) and rank M vector bundles (I)

We start from a rank M vector bundle V over Σ, and a choice of N
sections si (x), 1 ≤ i ≤ N of V, which generate the fiber Vx at each
x ∈ Σ.
Using local frames in open subsets Uα covering Σ, each section
si (x) may be seen as an M-component row-vector. These N rows
form an N ×M matrix V (α)(x), and if x ∈ Uα ∩ Uβ :

V (α)(x) = V (β)(x)t(βα)(x)

where t(βα)(x) are the transition functions of V.
The linear span in CN of the columns of V (α)(x) form a well
defined f (x) ∈ Gr(M,N).
Elements of Vx ←→ M-component row-vectors
Elements of f (x) ←→ N-component column-vectors

Vx ∼= f (x)∗
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Maps Σ→ Gr(M ,N) and rank M vector bundles (II)

Basic fact: there exists a 1 to 1 correspondence between:
Maps f : Σ→ Gr(M,N)

Rank M vector bundles V over Σ, together with a choice of N
sections of V, which generate the fiber Vx at each x ∈ Σ,
modulo automorphisms of V.

Σ Gr(M,N)

V ∼= f ∗T ∗ T ∗

f

f̄

si ti1 ≤ i ≤ N

T ∗: dual of tautological rank M
vector bundle over Gr(M,N).
For V ∈ Gr(M,N), ti (V ) is the
linear form on V defined by the
i-th component in CN (V ⊂ CN).
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Using the Plücker embedding of Gr(M ,N) into CP(Ñ − 1)

Σ Gr(M,N)

Det V Det T ∗

CP(Ñ − 1)

O(1)

f

f

iP

iP

si1 ∧ ... ∧ siM ti1 ∧ ... ∧ tiM xi1,...,iM

Ñ = N!/(M!(N −M)!). Suggests to consider iP f , which is
generated by the Ñ sections si1 ∧ ... ∧ siM of Det V.
Main difficulty: An optimal texture Σ→ CP(Ñ − 1) is not always
of the form iP f !
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Recipe for optimal Σ→ Gr(M ,N) textures

1 Pick a rank M vector bundle V over Σ

2 Choose N global sections of V, encoded in an N ×D matrix A

3 Apply Plücker’s embedding: iP f is described by Ñ sections of
Det V, encoded in an Ñ × D̃ matrix Ã.

4 Try to impose the optimality constraint for projective textures:
Ã†Ã = ID̃ . Assuming that entries of Ã†Ã are independent
functions of those of A, this gives D̃2 constraints.

SU(N)-invariant physical degrees of freedom are given by entries of
A†A. This gives D2 independent SU(N)-invariant physical degrees
of freedom when D ≤ N, and 2ND − N2 < D2 degrees of freedom
when D > N. Optimal textures are described by D2 − 2A(V)− D̃2

real parameters, where A(V) is the number of independent (over
C) automorphisms of V.
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Holomorphic maps from the sphere to Gr(M ,N)

Any rank M vector bundle V on the sphere decomposes as a
direct sum of line bundles V = O(d1)⊕O(d2)...⊕O(dM),
with d1 + d2 + ...+ dM = d is the total topological charge
(Grothendieck 1957).
Sections of O(d) on S2 form a complex space of dimension
d + 1 (spin S = d/2 representation of SU(2)), realized by
polynomials in z with maximal degree d .
From this, we get that D = d + M and D̃ = d + 1
For M = 2, A(V) = d2 − d1 + 2 if d1 < d2, and A(V) = 3 if
d1 = d2. If we choose d1 and d2 to minimize A(V) at fixed d ,
we predict 2d − 3 SU(N)-invariant free parameters for
constant topological charge textures (if N ≥ D = d + 2).
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SU(N)-invariant deformation modes on the sphere

Assumptions
D̃2 constraints are independent
Automorphisms of V generate A(V) independent small
deformations of A†A

N \d 1 2 3 4 5 6 7 8 9 10
3 0 0 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
4 0 1 2 1 ∅ ∅ ∅ ∅ ∅ ∅
5 0 1 3 4 3 0 ∅ ∅ ∅ ∅
6 0 1 3 5 6 5 2 ∅ ∅ ∅
7 0 1 3 5 7 8 7 4 ∅ ∅
8 0 1 3 5 7 9 10 9 6 1
9 0 1 3 5 7 9 11 12 11 8
10 0 1 3 5 7 9 11 13 14 13
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Holomorphic maps from the torus to Gr(M ,N)

There exist undecomposable vector bundles on a torus, which
have been completely classified by Atiyah (1957).
Their spaces of sections can be explicitely described in terms of
θ functions and their derivatives, (Polishchuk & Zaslow, 1998).
D = D̃ = d (Riemann-Roch).
Some undecomposable bundles have no automorphisms
(A(V) = 0). Then, A†A = Id is a solution, and seems to be
the only one. This happens for example if M and d are
relatively prime. We therefore recover a situation very similar
to M = 1.
For some other undecomposable bundles, a simple counting
argument suggests that in general, there are no solutions to
Ã†Ã = Id . However, for M = 2 and d even, D. Kovrizhin has
found special solutions to Ã†Ã = Id .
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Final remarks

Qualitative differences between M = 1 and M ≥ 2. Main
manifestation: existence of new SU(N)-invariant deformation
modes on the sphere. Their physical interpretation remains
unclear.
On the torus, special role played by vector bundles without
automorphisms. Related to the concept of stability, which
plays a crucial role in many situations (existence of
Hermitian-Einstein metrics, construction of moduli spaces,...)
Other situations where getting a uniform topological density is
useful: Chern band insulators, generation of artificial gauge
fields in cold atom systems, optimization of quantum
topological pumps...
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Undecomposable holomorphic vector bundles on a torus

Wanted: Undecomposable vector bundle V of rank M and degree d
on the (1, τ)-torus. With h = gcd(M, d), we write
(M, d) = h(M ′, d ′). Then (Atiyah, 1957):

V = π
(M′)
∗ (L′ ⊗ Fh)

L′: a line bundle of degree d ′ over the
(1,M ′τ)-torus.
Fh: an undecomposable bundle of rank h and
degree 0 over the (1,M ′τ)-torus.
π

(M′)
∗ : projection from the (1,M ′τ)-torus

onto the (1, τ)-torus.
Stable bundles correspond to h = 1.

τ

M ′τ

1
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Kähler manifolds

M complex manifold with local complex coordinates wi .
M is equipped with an Hermitian metric

ds2 =
∑
ij

hij dwidw̄j

such that the corresponding associated (1,1) form

ω =
i

2

∑
ij

hij dwi ∧ dw̄j

is closed.
This implies that, locally, the metric derives from a Kähler potential
Φ, i.e. that:

hij =
∂2Φ

∂wi∂w̄j
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Grassmannians are Kähler manifolds

Choice of local coordinates on Gr(M,N): Pick a rank M, N ×M
matrix V . Then it has at least one non-zero M ×M minor
determinant. Assuming this is the first one, we get a dense open

subset of Gr(M,N). V =

(
Vu

Vd

)
. Multiplying V on the right by

V−1
u leads to the same M-dimensional subspace. This changes V

into (
Im
W

)
where W = VdV

−1
u is an arbitrary (N −M)×M matrix.

Kähler potential:

Φ(W ,W †) =
1
π

log det(I + W †W )
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Energy functionals for maps to Kähler manifolds

Classical energy functional for a map (x , y)→ (wi ):

E =
g

2

∫
d2r hij(w(r), w̄(r))∇wi .∇w̄j

E = g

∫
d2r hij(∂zwi∂z̄ w̄j + ∂z̄wi∂z w̄j)

The topological charge density is defined by:

Q =

∫
d2r f ∗ω

Explicitely:

Q =

∫
d2r hij(∂zwi∂z̄ w̄j − ∂z̄wi∂z w̄j)

dω = 0 implies that Q does not change to first order under any
infinitesimal variation of the map f , so Q depends only on the
homotopy class of f . In many interesting situations, Q takes only
integer values.
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Bogomolnyi inequality and its consequences

E = g(A + B)

Q = A− B

A =

∫
d2r hij∂zwi∂z̄ w̄j B =

∫
d2r hij∂z̄wi∂z w̄j

Since hij = h̄ji is positive definite, A and B are both real and
non-negative. Then A + B ≥ |A− B|, so:

E ≥ g |Q|

Minimal energy configurations with fixed Q:
If Q > 0, B = 0, so ∂z̄wi = 0: minimal configurations are
holomorphic.
If Q < 0, A = 0, so ∂zwi = 0: minimal configurations are
anti-holomorphic.
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