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Introduction

The bulk-boundary correspondence (BBC) relates topol. invariants of the bulk (interior)
of a material to topol. invariants localised at its boundary. For the IQHE

σHall = σedge

Hatsugai (1996) proposed a version of BBC for periodic models (complex analysis).

In joint work with Schulz-Baldes & Richter we proposed a purely topological version
using K -theory of C∗-algebras and cyclic cohomology for 2-d magnetic operators

for tight binding models (bounded spectrum) in 2003

for continuous models (differential operators, bounded below) in 2004

Use of C∗-algebras allows to treat aperiodic systems (Bellissard) and to treat disorder.

Elbau & Graf (2002) gave an analytic proof of BBC.

The book by Prodan & Schulz-Baldes ”K-theoretic Bulk-Boundary Correspondence ..”
(Springer, 2016) develops the theory for tight binding models in full detail.

Since recently, Graf, Jud, Tauber speak of violation of BBC in specific periodic models
(shallow water, massive Dirac) which have spectrum not bounded from below.

Which problems arise with for systems not bounded below?
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Principles of the K -theoretic BBC in 3 steps

We work throughout in the 1-particle 0-temperature approx. (free fermions), no FQHE!

1. Topological setup. Create a correspondence between bulk and edge through an
extension of C∗-algebras

E ↪→ Â� A

A = algebra of observables in the bulk (no edge) (defined by phys. principles)

E = algebra of observables localized near the edge

Â ”links A and E topologically” at best with trivial K -theory

Then there is a boundary morphism (abstract BBC)

exp : K0(A)→ K1(E)

2. Affiliation problem. Relate the bulk Hamiltonian H to A
If H is bounded then H ∈ A. But if H is unbounded?

Goal: The topological phase of a gapped H is a K -theory class of A.

3. Numerical BBC. Bulk-boundary correspondence between numerical invariants.

Need additive functionals from K -groups to R (measure topological phases).

Dual theory: K -homology with duality pairing given by indices (Z-valued (or Z/2))

”Dual” theory cyclic cohomology with Connes pairing (Chern-numbers, C-valued).
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Topological setup I
The observable algebra of the bulk is faithfully represented on L2(Rd )

A := 〈V (x)f (D)|V ∈ C, f ∈ C0(Rd )〉C∗

C ∈ C(Rd ) alg. of bounded potentials describing the long-range order structure of the
material (i.e. C = periodic functions for a crystal, C = C for constant potential)

D = momentum operator, possibly coupled to a vector pot. for magn. field B.
C0(Rd ) = continuous function vanishing at infinity.

Operators of A have integral kernels with coeffs. in C.

A ∼= C oα,B Rd

Introduce a boundary at s ∈ R. Consider operators on L2(Rd × R)

E := 〈V (x)f (D)φ(x⊥ − s)|V ∈ C, f ∈ C0(Rd ), φ ∈ C0(R)〉C∗

Operators of E have integral kernels with coeffs. in C ⊗ C0(R) (decay away from bdry)

E ∼= A oα̂⊥ R ∼= C oα‖,B Rd−1 ⊗K(L2(R))

Link these algebras through operators on L2(Rd × R)

Â := 〈V (x)f (D)φ(x⊥−s)|V ∈ C, f ∈ C0(Rd ), φ ∈ C0,∗(R)〉C∗

φ vanishing at −∞ having a limit at +∞ (Wiener-Hopf extension).

E ↪→ Â
s→−∞
� A
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K0 and K1

Let A be a unital C∗-algebra.

GL(A)s.a. = {h ∈ A : h−1 ∈ A, h self adjoint}

K0(A) is the stabilised, grothendiecked version of GL(A)s.a./ ∼homotopy .

Mn(A) 3 h 7→
(

h 0
0 1

)
∈ Mn+1(A)

V (A) =
⋃

n GL(Mn(A)s.a./ ∼homotopy , abelian semigroup under

[h1] + [h2] =

[(
h1 0
0 h2

)]
K0(A) is the group of formal differences of elements of V (A).

K1(A) is the stabilised version of GL(A)/ ∼homotopy

If A is not unital then we add a unit A∼ = A + C1.

Ki (A) is the subgroup of classes from Ki (A∼) not coming from the unit.
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The boundary map

Theorem (Fundamental theorem of K -theory.)

Let E
i
↪→ Â

q
� A. Then

K0(E) → K0(Â) → K0(A)
↑ ind ↓ exp

K1(A) ← K1(Â) ← K1(E)

is exact. If Ki (Â) = 0 then exp is an isomorphism.

exp is induced by exp : GL(A∼)s.a./ ∼hom→ GL(E∼)/ ∼hom

exp([h]) := [exp(ıπ(χ(ĥ) + 1))]

ĥ ∈ Â a lift of h, i.e. q(ĥ) = h.

h has gap ∆ at 0. χ : R→ [−1, 1] is continuous constant = −1 to the left,
constant = 1 to the right of ∆.

[exp(ıπ(χ(ĥ) + 1))] does not depend on the choice of χ.
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Affiliation

In the continuous model (differential operators) Hamiltonians are unbounded.
Elements of A are bounded.

Let A be faithfully (and non-degenerately) represented on H.

The multiplier algebraM(A) of A is the norm-closed C∗-algebra of B(H) given by
operators T ∈ B(H) s.th. Ta, aT ∈ A for all a ∈ A.

1 M(A) is unital and contains A as an ideal.

2 If A is stable (A⊗K ∼= A) then Ki (M(A)) = {0}. (Our algebras above A and E
are typically stable.)

Definition

An operator T is affiliated to A if its bounded transform F (T ) := T (1 + T∗T )−
1
2

belongs toM(A) and (1 + T∗T )−
1
2 A is dense in A.

If T is invertible and self adjoint then F (T ) is homotopic to the spectral flattening of T .
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Affiliation

Definition

Let T be affiliated to Mn(A). (F (T ) = T (1 + T∗T )−
1
2 ∈M(Mn(A)))

We say that T is strongly affiliated to A if its bounded transform

F (T ) ∈ Mn(A∼)

We say that T is resolvent affiliated to A if its resolvents

(T + z)−1 ∈ Mn(A∼), ∀z ∈ ρ(T )

Lemma

Let H be self adjoint affiliated to A.

If H is resolvent affiliated and bounded from below then it is strongly affiliated.

Strong affiliation is preserved under infinitesimal H-bounded perturbations.
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Example
Consider the massive 2d Dirac operator (in Fourier space)

H(k) =

(
m ik1 + k2

ik1 − k2 −m

)
Its bounded transform

F (H(k)) = (1 + m2 + k2
1 + k2

2 )−
1
2

(
m ik1 + k2

ik1 − k2 −m

)
is a multiplier of M2(A) with A = C oα R2

Fourier∼= C0(R2).

It is not strongly affiliated as F (H(k)) does not converge to a constant matrix as
|k | → ∞.
But it is resolvent affiliated to A, because(

m ik1 + k2
ik1 − k2 −m

)−1 |k|→∞−→ 0

On the other hand, the regularised massive 2d Dirac operator

Hε(k) =

(
m + εk2 ik1 + k2
ik1 − k2 −m − εk2

)
is strongly affiliated as

F (Hε(k))
|k|→∞−→

(
1 0
0 −1

)
∈ M2(A∼)
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BBC for strongly affiliated operators (abstract)

Suppose H is self adjoint, invertible (with gap ∆) and strongly affiliated. Then
F (H) ∈ Gls.a.(Mn(A∼)) and thus defines an element of K0(A), the bulk invariant.

We therefore can apply the boundary map of K -theory to obtain a boundary invariant.

Look for a lift F̂ ∈ Â∼ of F (H), i.e. an element such that F̂ s→−∞−→ F (H) ∈ A∼.

Choose χ : R→ [−1, 1], continuous constant = −1 to the left, constant = 1 to the
right of ∆.

The K1(E)-class of exp(ıπ(χ(F̂ ) + 1)) is the boundary invariant.
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How to construct a lift?

In the work of 2004, H was given as a differential operator, resolvent affiliated and
bounded from below (magnetic Laplacian with homogeneous bounded potential).
There we lifted F (H) as follows:

Restrict H to the halfspace {(x‖, x⊥) ∈ Rd : x⊥ ≥ s} and employ Dirichlet
boundary conditions. Call that Ĥs .

Take the bounded transform of Ĥs to define F̂ := F (Ĥs).

There is a lot of flexibility to express the boundary class. Essentially, we only need a
non-vanishing continuous function ϕ : R→ C which is 1 at ±,∞ winds once around 0
and this at least partly when varying over the gap. Then

exp(ıπ(χ(F̂ ) + 1) ∼h ϕ(Ĥs)

With an appropriate choice ϕ(Ĥs) is the unitary implementing time evolution of the
states in the gap (edge states) by time t = 2π

|∆| .
Questions:

1 Can we always construct a lift like this?

2 Can we take other boundary conditions to construct a lift?

Answer to 2: No! See talk by G.M. Graf.
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Non-strongly affiliated case: relative BBC

If H is not strongly affiliated so that F (H) ∈M(A)\A∼ we need to work with
multipliers. Simply replacing A byM(A) is not good enough as Ki (M(A)) = 0.

Idea: Work with pairs which differ not too much.

Let
M(2)(A) := {(m1,m2) ∈M(A)⊕M(A) : m2 −m1 ∈ A}

Lemma

If A is stable then the inclusion A
ı
↪→ M(2)(A)

ı(a) = (0, a)

induces an isomorphism on K -theory Ki (A)
ı∗∼= Ki (M(2)(A)).

E ↪→ Â � A
↓ ı ↓ ı ↓ ı

M(2)(E) ↪→ M(2)(Â) � M(2)(A)

Hence the six-term exact sequence obtained from E ↪→ Â� A is isomorphic to the
one from M(2)(E) ↪→ M(2)(Â) � M(2)(A).
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relative BBC for relatively strongly affiliated operators

Definition

A pair (T1,T2) of operators affiliated to A is relatively strong affiliated to A if
F (T1)− F (T2) ∈ A. In other words (T1,T2) ∈ M(2)(A).

The relative BBC for a pair (H1,H2) of relatively strongly affiliated Hamiltonians with
common gap is now given by the exponential map of the six term exact sequence
associated to M(2)(E) ↪→ M(2)(Â) � M(2)(A).

Question: In the case of differential operators, can we construct lifts through boundary
conditions?
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numerical BBC

Cyclic co-cycles define functionals on K -theory via Connes pairing.

Suppose we have a densely defined faithful lower-semicontinuous trace T : A→ C and
an action α of Rn on A which leaves the trace invariant. If the Rn-action is sufficiently
regular then δi (a) = limt→0 t−1(αtei (a)− a) yields a collection of n commuting densely
defined derivations on A and we get a densely defined multilinear map on A⊗(n+1) → C

chT ,α(a0, · · · , an) = cnT (a0δ[1,a1 · · · δ,n]an)

which yields a well defined map on GLs.a(A)/ ∼ homotopy

〈chT ,α, [h]〉 = chT ,α(h, · · · , h)

(need spectrally flattened smooth representative h) and on GL(A)/ ∼ homotopy

〈chT ,α, [h]〉 = chT ,α(h−1, h, · · · h−1, h)

Then, in the context of the Wiener-Hopf extension

〈chT ,α, [h]〉 = 〈chT̂ ,α×α̂⊥ , exp[h]〉 = 〈chT̂ ,α‖ , exp[h]〉

(the latter if α involves translation ⊥ to the boundary).
This is the numerical BBC.
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Interpretation of the numerical BBC

Consider a 2-dim strongly affiliated Hamiltonian H, periodic along the boundary. Let
n = 2.

Suppose we can lift H using a boundary condition, getting Ĥs .

Then the l.h.s. 〈chT ,α, [H]〉 is the Chern number of the Fermi projection and the r.h.s.
〈chT̂ ,α‖ , exp[H]〉 the spectral flow of Ĥs(k) through a fiducial line in the gap when k‖
varies over one period.

This cannot be violated. If the two quantities are not equal then the boundary
conditions employed do not yield a lift, i.e. F (Ĥs) is not strongly affiliated to Â.
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numerical relative BBC

In principle the numerical BBC for strongly affiliated operators leads directly to a
numerical relative BBC by combining chT ,α with ı : A → M(2)(A),

〈chM(2)(A)
T ,α , [(h1, h2)]〉 := 〈chA

T ,α, ı
−1
∗ [(h1, h2)]〉

But it might be difficult to compute ı−1
∗ [(h1, h2)]. If (h1, h2) have more regularity, then

this chern number can be obtained as a difference

〈chM(2)(A)
T ,α , [(h1, h2)]〉 = cnT (h2δ[1,h2 · · · δ,n]h2 − h1δ[1,h1 · · · δ,n]h1)

The regularity needed for h1 and h2 is that t 7→ αtei (h1) is smooth in the norm topology
and t 7→ αtei (h2 − h1) smooth in the ‖ · ‖+ ‖ · ‖T topology.
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