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Quantum Hall effect (QHE):

1. QHE as bulk effect 2. QHE as a pump effect
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> E, induced by a voltage > E; induced by a change in

difference the flux ¢(s)
> =0k > <bh>=0pWV
> =0 Ex+ O(E™) > <h>=0pVi+O0(Vi®)

[Klitzing, Dorda, Pepper 1980] oyay = n%, nez



Purely linear response of the quantum Hall current

In the interpretation of QHE as a bulk effect:

Theorem [G. M., D. Monaco] (informal statement)
For non-interacting, periodic electrons at zero temperature under a
spectral gap assumption:

j1 =0B E2 + O(Egoo).

Its proof is based on space-adiabatic perturbation theory [Kato,
Nenciu, Teufel, ...]
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In the interpretation of QHE as a pump effect:

» The analogous result (informal statement)
< /2>=0',D \/1+O(\/1°o)

is due to [Klein, Seiler 1990] in the continuum (recently in the
discrete [Bachmann, De Roeck, Fraas, Lange 2021]) setting for
many-body electron gases at zero temperature under a
spectral gas assumption.

> Their proofs is based on the physical magnetic-flux insertion
argument by [Laughlin 1981], made rigorous by the use of the
time-adiabatic perturbation theory [Avron, Seiler 1985; Avron,
Seiler, Yaffe 1987; Avron, Seiler, Simon 1994, .. .].



Review: Klein—Seiler's argument
On A:=[0,L1] x [0, Lo] =R? consider (a fermionic many-body
version of )

. 1 2
H(p1,p2) = 5 PA—(Pli—i—(,bzi—z + W(x)

with periodic boundary condition, where
> pa:=—-iV—A(x), where A models an external magnetic field

> (/),-%' is a vector potential “generating a magnetic flux ¢;

through loop in the i-th direction”

> W stands for all interaction among the particles and of the
particles with impurities

> Beyond regularity assumptions, suppose that Fl((p1,<p2) has an
isolated spectral component o.(¢1,¢2), with corresponding

finite rank spectral projection P(¢1,¢2)
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Review: Klein—Seiler's argument
Geometry of the quantum Hall system:

Notice that H(¢y,¢2) is 27-periodic in ¢q, ¢o up to a gauge
transformation: defining G(¢1, ) 1= el($1X1/Li+¢2 X/ L2)

H(¢p1,¢2) := G* (¢p1,02) H(¢p1, 42) G (1, ¢2)
= ﬁ(‘/’l +2m,¢2) = ﬁ(¢1,¢2+2”)



Review: Klein—Seiler's argument
Time-dependent Hamiltonian

H.(t,®):= H(p1 = f(t/7),p2 = D), H,(s,®):= H;(s1,®)
> 7:=7 !: time-adiabatic parameter (n < 1)
> s:=t/71: scaled time

> ¢ (t)=1f'(s)noc Vi: Hall voltage

@

2n
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Review: Klein—Seiler's argument
> Physical evolution:

105U (s,®) =7 H;(s,@) U (s,®), U;(0,®)=1d

> Physical state:
Pi(s,®) = Ur(s,®)P(0,2) U7 (5,®),  P(s,D) = Yo.(s,0)(H(s P))
> Adiabatic evolution:
105 U4 (s, @) = 7 Hagq (s, @) Uad (s, @), Uaq(0,®@)=1d
where

Haa(s,®) := He(s, ®) + %[65P(s,(b), P(s, ®)]



Review: Klein—Seiler's argument

Theorem (Adiabatic theorem)
Under previous assumptions, one has

> The adiabatic evolution intertwines the spectral subspaces:

Uad(s, @)P(0,®) = P(s,®) U,q(s, @)

> Since H;(s,®) is constant near s=1 (suppf’ <(0,1))

U (1, @)U (1,@)P(0,®) = P(0,®) U4 (1, @) U (1,@) + O (77°)




Review: Klein—Seiler's argument
The Hall current intensity

IQ(S,(D) = TF(PT(S,q))aq) H-,;(S,(D)) .



Review: Klein—Seiler's argument
The Hall current intensity

I2(5,(D) = Tr(P,(s,®)6<p H-,;(S,CD)) .

The ®-average transported charge

1 21 1
(@Qo) := gfo d(D(TfO dslz(s,CI)))

: 2 1

- L f do f ds 0, Tr(P(0,®) Uz (s,®)0 Us (s, ®))
21 Jo 0

i

= — T PO,(D U* ,(I) dUa ’(I) +@ —00
2”fa([O,l]x[o,zn]) r(P(0,®)Uzy(s, @)dUaa(s, @) + O (™)

1. S .

= o 1], 401002 Tr (P[0, P.0y, Pl) +6(r )
T Jr2

NN .

=e2/h Chern number €7

where last equality uses the Chern—-Simons formula:

Tr PydPy AdPy =TrPdP AdP +d(Tr PU1dU)
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Assumption (Hp)
> #:=1%(%)ecCV,
% =RY or & =discrete d-dimensional crystal c RY

> Hy is a periodic gapped operator on # and bounded from
below

> Bravais lattice of translations T = 79
[Ho, Ty]=0 Vyerl

> via Bloch-Floquet representation Ho = [ dk Ho(k),
Ho(k) acts on #;:= L?(6;)eCN, € =2 /T



Our argument

Assumption (Ho)
> #:=12(%)ecCN,
X =RY or & =discrete d-dimensional crystal c RY

> Hp is a periodic gapped operator on # and bounded from
below

» Tl = Fermi projection on occupied bands below the spectral
gap is in %]



Our argument

Assumption (Hp)
> = 12(%)ecCN,
2 =R9 or & = discrete d-dimensional crystal c RY

> Hpy is a periodic gapped operator on /# and bounded from
below, such that Hy satisfies technical but mild hypotheses
>

HO:Rd_)g(@fﬂyff)’ k'_’HO(k)

is a smooth equivariant map taking values in the self-adjoint
operators with dense domain @¢c #. £(Py, /%) is the space
of bounded operators from %, equipped with the graph norm
of Hy(0), to 74
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Our argument

Assumption (Hp)
> #:=12(%)ecCN,
2 =R9 or & = discrete d-dimensional crystal c RY

> Hy is a periodic gapped operator on / and bounded from
below, such that Hy satisfies technical but mild hypotheses

Remark The above assumptions are satisfied
> in most tight-binding models having spectral gap (discrete

case)
> by gapped, periodic Schrédinger operators

Ho = %(—iv —A(x))? + V(x)

under standard hypotheses of relative boundedness of the
potentials w.r.t. —A (continuum case)
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A model for the switching process

H:(t):=Ho—ef(t) X, tel,

where [-1,0] ¢/ cR is compact interval and € < 1.
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A model for the switching process

He(nt):=Hy—ef(nt)Xa, ntel,

where [-1,0] €/ <R is compact interval, e <1 and < 1.

o
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> the configuration space is the plane R? (while in the context of
QHE as pump effect a cylindrical or torus geometry is

necessary) and so the system has infinite extent (no
thermodynamic limit needed)



Our argument
Geometry of the quantum Hall system (d =2 & continuum):

T2

Ey
J1

O I
B

Notice that

> the configuration space is the plane R? (while in the context of
QHE as pump effect a cylindrical or torus geometry is
necessary) and so the system has infinite extent (no
thermodynamic limit needed)

> for every £ >0 the domain 2(H,) #2(Ho) and the spectrum
o(He)=R



Our argument

A trace functional to compute expectation values of extensive
observable in extended states (due to periodicity). Let I'=2z9

> Trace per unit volume: For any A being trace class on
compact sets,

. 1
1(A)= lim G TrOwAYL)s X=Xt/
Le2N+1
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Our argument

A trace functional to compute expectation values of extensive
observable in extended states (due to periodicity). Let I'=2z9

> Trace per unit volume: For any A being trace class on
compact sets,

i 1

1(A)= lim G TrOwAYL)s X=Xt/
Le2N+1

> Properties of t:

> Let A be periodic and trace class on compact sets. Then
7(A) =Tr(x1Ax1).

> Let A, B be bounded and periodic operator, and 7(|A|) < co.
Then
7(AB) =1(BA).
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> The physical state: p(t) being the solution of the following
Cauchy problem

{ idp(t) = [He(nt), p(t)]
p(to) =

) Iy, nty < — -1.

One is interested in p(t) = p,(t) for any t =0 (when the
perturbation is fully switched on).
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> The physical state: p(t) being the solution of the following
Cauchy problem

{ idp(t) = [He(nt), p(t)]
p(to) =

) Iy, nty < — -1.

One is interested in p(t) = p,(t) for any t =0 (when the
perturbation is fully switched on).

> A enough good approximation of the physical state:
non-equilibrium almost-stationary state (NEASS) I1; , such
that for every n,meN

sup  [7(Ape, () = T(ATl,)| = Ce™* (1+19) ve=0 (1)

nelem, ]

for any suitable observable A.

Inequality (1) is proved for interacting models on lattices
[Henheik, Teufel 2021, Teufel 2020, Monaco, Teufel 2019],
while for this framework it is work in progress with Teufel.
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Consider the stationary perturbed Hamiltonian
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unique NEASS TII; , such that

n
._ NlES —ieSn j n+1
g pi=e"7"Ilge en = Z EJHj té& I—[reminder(‘?)
Jj=0
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where  Fni=Y & PA; and  [He I p] = ™ [Re 0, I ]
j=1



Our argument
Construction of the NEASS at every order in ¢

Consider the stationary perturbed Hamiltonian
H.:=Hy—€eX;
Theorem|[G. M., D. Monaco]

Under Assumption (Ho), we have that for any neN there exists a
unique NEASS TII; , such that

n
._ NlES —ie S,
g pi=e"7"Ilge en Z JH +e" reminder(g)

n .
where S ,i=Y & TPA; and | [He T 0] = € Re n T ] |
j=1
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The proof relies on the following

Lemma
Under Assumption (Hp), decompose % = RanTly & (RanTlp)* and
correspondingly operators as

A= AP 4 AOD

where AP =TIpAllg + T3 ATy, AP =TIoAlly + I3 ATlp.
Define the Liouvillian

Lo (A) = —i[Ho, A].
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correspondingly operators as

A= AP 4 AOD

where AP =TIpAllg + T3 ATy, AP =TIoAlly + I3 ATlp.
Define the Liouvillian
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The proof relies on the following

Lemma

Under Assumption (Hg), then the Liouvillian is invertible on OD
operators (thanks to the gap condition):

For any B = BOP, consider £y, (A) =B

1
— A=A = Ef dz (Ho - z1d) ™ [[g, B] (Ho — z1d) .
c



Our argument

The proof relies on the following

Lemma

Under Assumption (Hg), then the Liouvillian is invertible on OD
operators (thanks to the gap condition):

For any B = BOP, consider £y, (A) =B

1
s A= AOD _ Q_f dz (Ho - 21d) "} [TTo, B] (Ho - 21d) .
e
For example

Fe1 ==L (X, o], o) = — L (X°).



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Theorem[G. M., D. Monaco]
Consider the Hamiltonian H, = Hy — X5, where Hy satisfies
Assumption (Hg). Then for every ne N we have that

)

(N1 ,) =cogan + @(£"+1)

where I1; , is as in the previous Theorem and

OHall -= iT(Ho [[Ho,Xl], [Ho,X2]]).



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Theorem[G. M., D. Monaco]
Consider the Hamiltonian H, = Hy — X5, where Hy satisfies
Assumption (Hg). Then for every ne N we have that

)

(N1 ,) =cogan + @(£"+1)

where I1; , is as in the previous Theorem and
OHal := it (o [[TTg, X1], [, X2]])-

Remark
Up to prove the validity of the NEASS approximation for the state
of the system (in the sense of inequality (1)),

(4 pey(t)) = eoga +0(e™), t=0

is obtained.
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Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof
In view of [He, ¢ ] = €™ [Re.n, e, 1]

T ([HO»Xl]He,n) =7 (Hs,n[Hgy Xl]Hg,n)
=T ([He,n Hsne,m I—Is,nXl Hs,n]) + £n+1 T (Hs,n[[ns,m Rs,n]; [le He,n]] Hs,n)



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof
By using H. := Hy—eX;

7 ([Ho, Xi]g, ) = 7 (Mg n[He, X1 11 1)
=7 ([Me,nHeTle,p, e n X1 1T n]) + €771 7 (T, [ [T ) Re, ], [X0, T, ] T 1)
=7 ([[g,n Holle, n, I n X111 ]) — € T ([ILe, n Xo g, T n X I 1))

+&™L 1 (I, [T,y Re,n], [X0, I, ] ) T, )



Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof

7 ([Ho, X1]11¢, ) = 7 (I o [He, Xi]T1¢, )
= 7([Me, nHe e, e n X1 ]) + €771 7 (e, [ [T, Re ], [X1, T, ] T )
=7 ([ITg, s Holle , X1 n X111 ]) — T ([Hg, n Xole o, 1 n X111 1))

+ ™1 (e [T,y Re,n]s [X0, e ] | T, )

We conclude noticing that 7 ([I1¢,, Holle, p, I n X111, n]) = 0 by
cyclicity of the trace, and the Chern-Simons-like formula defining
Py := UPU™!, one has that

([PuX1Py, PuXaPy]) = 1([PX1 P, PX2P]) for U, P periodic and
regular enough.
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> Validity of the NEASS approximation for the physical state in
one-body approximation in the continuum (sub-project: energy
and space estimates for the physical evolution, similar to [M.
2022])



What next?

> Validity of the NEASS approximation for the physical state in
one-body approximation in the continuum (sub-project: energy
and space estimates for the physical evolution, similar to [M.
2022])

> Inclusion of interactions on a lattice [Teufel 2020; Henheik,
Teufel 2021]



