Purely linear response of the quantum Hall current to space-adiabatic perturbations

Giovanna Marcelli

joint work arXiv:2112.03071 with D. Monaco

Quantum Hall effect and Topological Phases - Strasbourg June 20, 2022

Quantum Hall effect (QHE):

1. QHE as bulk effect
2. QHE as a pump effect

Quantum Hall effect (QHE):

1. QHE as bulk effect
2. QHE as a pump effect

Quantum Hall effect (QHE):

1. QHE as bulk effect

2. QHE as a pump effect

- E_{2} induced by a voltage difference

Quantum Hall effect (QHE):

1. QHE as bulk effect

2. QHE as a pump effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$

Quantum Hall effect (QHE):

1. QHE as bulk effect

2. QHE as a pump effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$

Quantum Hall effect (QHE):

1. QHE as bulk effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$

2. QHE as a pump effect

- E_{1} induced by a change in the flux $\phi(s)$

Quantum Hall effect (QHE):

1. QHE as bulk effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$

2. QHE as a pump effect

- E_{1} induced by a change in the flux $\phi(s)$
- $\left\langle I_{2}\right\rangle=\sigma_{P} V_{1}$

Quantum Hall effect (QHE):

1. QHE as bulk effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$

2. QHE as a pump effect

- E_{1} induced by a change in the flux $\phi(s)$
- $\left\langle I_{2}\right\rangle=\sigma_{P} V_{1}$
[Klitzing, Dorda, Pepper 1980] $\sigma_{\text {Hall }} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}$

Quantum Hall effect (QHE):

1. QHE as bulk effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$
- $j_{1}=\sigma_{B} E_{2}+O\left(E_{2}{ }^{\infty}\right)$

2. QHE as a pump effect

- E_{1} induced by a change in the flux $\phi(s)$
- $\left\langle I_{2}\right\rangle=\sigma_{P} V_{1}$
[Klitzing, Dorda, Pepper 1980] $\sigma_{\text {Hall }} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}$

Quantum Hall effect (QHE):

1. QHE as bulk effect

- E_{2} induced by a voltage difference
- $j_{1}=\sigma_{B} E_{2}$
- $j_{1}=\sigma_{B} E_{2}+O\left(E_{2}{ }^{\infty}\right)$

2. QHE as a pump effect

- E_{1} induced by a change in the flux $\phi(s)$
- $\left\langle I_{2}\right\rangle=\sigma_{P} V_{1}$
- $\left\langle I_{2}\right\rangle=\sigma_{P} V_{1}+O\left(V_{1}^{\infty}\right)$
[Klitzing, Dorda, Pepper 1980] $\sigma_{\text {Hall }} \simeq n \frac{e^{2}}{h}, n \in \mathbb{Z}$

Purely linear response of the quantum Hall current

In the interpretation of QHE as a bulk effect:

Theorem [G. M., D. Monaco] (informal statement)
For non-interacting, periodic electrons at zero temperature under a spectral gap assumption:

$$
j_{1}=\sigma_{B} E_{2}+O\left(E_{2}^{\infty}\right)
$$

Its proof is based on space-adiabatic perturbation theory [Kato, Nenciu, Teufel, ...]

Comments on existing literature

In the interpretation of QHE as a pump effect:

- The analogous result (informal statement)

$$
<I_{2}>=\sigma_{P} V_{1}+O\left(V_{1}^{\infty}\right)
$$

is due to [Klein, Seiler 1990] in the continuum (recently in the discrete [Bachmann, De Roeck, Fraas, Lange 2021]) setting for many-body electron gases at zero temperature under a spectral gas assumption.

Comments on existing literature

In the interpretation of QHE as a pump effect:

- The analogous result (informal statement)

$$
<I_{2}>=\sigma_{P} V_{1}+O\left(V_{1}^{\infty}\right)
$$

is due to [Klein, Seiler 1990] in the continuum (recently in the discrete [Bachmann, De Roeck, Fraas, Lange 2021]) setting for many-body electron gases at zero temperature under a spectral gas assumption.

- Their proofs is based on the physical magnetic-flux insertion argument by [Laughlin 1981], made rigorous by the use of the time-adiabatic perturbation theory [Avron, Seiler 1985; Avron, Seiler, Yaffe 1987; Avron, Seiler, Simon 1994, ...].

Review: Klein-Seiler's argument

On $\Lambda:=\left[0, L_{1}\right] \times\left[0, L_{2}\right] \subset \mathbb{R}^{2}$ consider (a fermionic many-body version of)

$$
\tilde{H}\left(\phi_{1}, \phi_{2}\right):=\frac{1}{2}\left(\mathbf{p}_{\mathbf{A}}-\phi_{1} \frac{\mathbf{e}_{1}}{L_{1}}-\phi_{2} \frac{\mathbf{e}_{2}}{L_{2}}\right)^{2}+W(\mathbf{x})
$$

with periodic boundary condition, where

- $\mathrm{p}_{\mathbf{A}}:=-\mathrm{i} \nabla-\mathbf{A}(\mathbf{x})$, where \mathbf{A} models an external magnetic field
- $\phi_{i} \frac{\mathbf{e}_{i}}{L_{i}}$ is a vector potential "generating a magnetic flux ϕ_{i} through loop in the i-th direction"
- W stands for all interaction among the particles and of the particles with impurities
- Beyond regularity assumptions, suppose that $\widetilde{H}\left(\phi_{1}, \phi_{2}\right)$ has an isolated spectral component $\sigma_{*}\left(\phi_{1}, \phi_{2}\right)$, with corresponding finite rank spectral projection $\widetilde{P}\left(\phi_{1}, \phi_{2}\right)$

Review: Klein-Seiler's argument
Geometry of the quantum Hall system:

Review: Klein-Seiler's argument

Geometry of the quantum Hall system:

Notice that $\tilde{H}\left(\phi_{1}, \phi_{2}\right)$ is 2π-periodic in ϕ_{1}, ϕ_{2} up to a gauge transformation: defining $G\left(\phi_{1}, \phi_{2}\right):=\mathrm{e}^{\mathrm{i}\left(\phi_{1} X_{1} / L_{1}+\phi_{2} X_{2} / L_{2}\right)}$

$$
\begin{aligned}
\widehat{H}\left(\phi_{1}, \phi_{2}\right) & :=G^{*}\left(\phi_{1}, \phi_{2}\right) \widetilde{H}\left(\phi_{1}, \phi_{2}\right) G\left(\phi_{1}, \phi_{2}\right) \\
& =\widehat{H}\left(\phi_{1}+2 \pi, \phi_{2}\right)=\widehat{H}\left(\phi_{1}, \phi_{2}+2 \pi\right)
\end{aligned}
$$

Review: Klein-Seiler's argument

Time-dependent Hamiltonian

$$
\widetilde{\widetilde{H}}_{\tau}(t, \Phi):=\tilde{H}\left(\phi_{1}=f(t / \tau), \phi_{2}=\Phi\right), \quad H_{\tau}(s, \Phi):=\widetilde{\widetilde{H}}_{\tau}(s \tau, \Phi)
$$

- $\eta:=\tau^{-1}$: time-adiabatic parameter $(\eta \ll 1)$
- $s:=t / \tau$: scaled time
- $\phi_{1}^{\prime}(t)=f^{\prime}(s) \eta \propto V_{1}$: Hall voltage

Review: Klein-Seiler's argument

- Physical evolution:

$$
\mathrm{i} \partial_{s} U_{\tau}(s, \Phi)=\tau H_{\tau}(s, \Phi) U_{\tau}(s, \Phi), \quad U_{\tau}(0, \Phi)=\mathrm{Id}
$$

Review: Klein-Seiler's argument

- Physical evolution:

$$
\mathrm{i} \partial_{s} U_{\tau}(s, \Phi)=\tau H_{\tau}(s, \Phi) U_{\tau}(s, \Phi), \quad U_{\tau}(0, \Phi)=\mathrm{Id}
$$

- Physical state:

$$
P_{\tau}(s, \Phi)=U_{\tau}(s, \Phi) P(0, \Phi) U_{\tau}^{*}(s, \Phi), \quad P(s, \Phi)=\chi_{\sigma_{*}(s, \Phi)}(H(s, \Phi))
$$

Review: Klein-Seiler's argument

- Physical evolution:

$$
\mathrm{i} \partial_{s} U_{\tau}(s, \Phi)=\tau H_{\tau}(s, \Phi) U_{\tau}(s, \Phi), \quad U_{\tau}(0, \Phi)=\mathrm{Id}
$$

- Physical state:

$$
P_{\tau}(s, \Phi)=U_{\tau}(s, \Phi) P(0, \Phi) U_{\tau}^{*}(s, \Phi), \quad P(s, \Phi)=\chi_{\sigma_{*}(s, \Phi)}(H(s, \Phi))
$$

- Adiabatic evolution:

$$
\mathrm{i} \partial_{s} U_{\mathrm{ad}}(s, \Phi)=\tau H_{\mathrm{ad}}(s, \Phi) U_{\mathrm{ad}}(s, \Phi), \quad U_{\mathrm{ad}}(0, \Phi)=\mathrm{Id}
$$

where

$$
H_{\mathrm{ad}}(s, \Phi):=H_{\tau}(s, \Phi)+\frac{\mathrm{i}}{\tau}\left[\partial_{s} P(s, \Phi), P(s, \Phi)\right]
$$

Review: Klein-Seiler's argument

Theorem (Adiabatic theorem)
Under previous assumptions, one has

- The adiabatic evolution intertwines the spectral subspaces:

$$
U_{\mathrm{ad}}(s, \Phi) P(0, \Phi)=P(s, \Phi) U_{\mathrm{ad}}(s, \Phi)
$$

- Since $H_{\tau}(s, \Phi)$ is constant near $s=1\left(\operatorname{supp} f^{\prime} \subset(0,1)\right)$

$$
U_{\mathrm{ad}}^{*}(1, \Phi) U_{\tau}(1, \Phi) P(0, \Phi)=P(0, \Phi) U_{\mathrm{ad}}^{*}(1, \Phi) U_{\tau}(1, \Phi)+\mathscr{O}\left(\tau^{-\infty}\right)
$$

Review: Klein-Seiler's argument
The Hall current intensity

$$
I_{2}(s, \Phi):=\operatorname{Tr}\left(P_{\tau}(s, \Phi) \partial_{\Phi} H_{\tau}(s, \Phi)\right) .
$$

where last equality uses the Chern-Simons formula:

Review: Klein-Seiler's argument

The Hall current intensity

$$
I_{2}(s, \Phi):=\operatorname{Tr}\left(P_{\tau}(s, \Phi) \partial_{\Phi} H_{\tau}(s, \Phi)\right)
$$

The Φ-average transported charge

$$
\begin{aligned}
\left\langle Q_{2}\right\rangle & :=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \Phi\left(\tau \int_{0}^{1} \mathrm{~d} s l_{2}(s, \Phi)\right) \\
& =\frac{\mathrm{i}}{2 \pi} \int_{0}^{2 \pi} \mathrm{~d} \Phi \int_{0}^{1} \mathrm{~d} s \partial_{s} \operatorname{Tr}\left(P(0, \Phi) U_{\tau}^{*}(s, \Phi) \partial_{\Phi} U_{\tau}(s, \Phi)\right) \\
& =\frac{\mathrm{i}}{2 \pi} \int_{\partial([0,1] \times[0,2 \pi])} \operatorname{Tr}\left(P(0, \Phi) U_{\mathrm{ad}}^{*}(s, \Phi) \mathrm{d} U_{\mathrm{ad}}(s, \Phi)\right)+\mathscr{O}\left(\tau^{-\infty}\right) \\
& =\underbrace{\frac{1}{2 \pi}}_{=\mathrm{e}^{2} / h} \underbrace{\mathrm{i}}_{\text {Chern number } \in \mathbb{Z}} \underbrace{\mathrm{d}}_{\mathbb{T}^{2}} \phi_{1} \mathrm{~d} \phi_{2} \operatorname{Tr}\left(\widehat{P}\left[\partial_{\phi_{1}} \widehat{P}, \partial_{\phi_{2}} \widehat{P}\right]\right) \\
& \mathscr{O}\left(\tau^{-\infty}\right)
\end{aligned}
$$

where last equality uses the Chern-Simons formula:

$$
\operatorname{Tr} P_{U} \mathrm{~d} P_{U} \wedge \mathrm{~d} P_{U}=\operatorname{Tr} P \mathrm{~d} P \wedge \mathrm{~d} P+\mathrm{d}\left(\operatorname{Tr} P U^{-1} \mathrm{~d} U\right)
$$

Our argument

Assumption (H_{0})

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$, $\mathscr{X}=\mathbb{R}^{d}$ or $\mathscr{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$

Our argument

Assumption $\left(\mathrm{H}_{0}\right)$

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$, $\mathscr{X}=\mathbb{R}^{d}$ or $\mathscr{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$
- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below

Our argument

Assumption $\left(\mathrm{H}_{0}\right)$

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$,

$$
\mathscr{X}=\mathbb{R}^{d} \text { or } \mathscr{X}=\text { discrete } d \text {-dimensional crystal } \subset \mathbb{R}^{d}
$$

- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below
- Bravais lattice of translations $\Gamma \simeq \mathbb{Z}^{d}$

$$
\left[H_{0}, T_{\gamma}\right]=0 \quad \forall \gamma \in \Gamma
$$

- via Bloch-Floquet representation $H_{0} \simeq \int_{\mathbb{T}_{d}}^{\oplus} \mathrm{d} k H_{0}(k)$, $H_{0}(k)$ acts on $\mathscr{H}_{\mathrm{f}}:=L^{2}\left(\mathscr{C}_{1}\right) \otimes \mathbb{C}^{N}, \mathscr{C}_{1}:=\mathscr{X} / \Gamma$

Our argument

Assumption (H_{0})

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$,

$$
\mathscr{X}=\mathbb{R}^{d} \text { or } \mathscr{X}=\text { discrete } d \text {-dimensional crystal } \subset \mathbb{R}^{d}
$$

- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below
- $\Pi_{0}=$ Fermi projection on occupied bands below the spectral gap is in \mathscr{B}_{1}^{τ}

Our argument

Assumption (H_{0})

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$,
$\mathscr{X}=\mathbb{R}^{d}$ or $\mathscr{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$
- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below, such that H_{0} satisfies technical but mild hypotheses

$$
H_{0}: \mathbb{R}^{d} \rightarrow \mathscr{L}\left(\mathscr{D}_{\mathrm{f}}, \mathscr{H}_{\mathrm{f}}\right), \quad k \mapsto H_{0}(k)
$$

is a smooth equivariant map taking values in the self-adjoint operators with dense domain $\mathscr{D}_{\mathrm{f}} \subset \mathscr{H}_{\mathrm{f}} . \mathscr{L}\left(\mathscr{D}_{\mathrm{f}}, \mathscr{H}_{\mathrm{f}}\right)$ is the space of bounded operators from \mathscr{D}_{f}, equipped with the graph norm of $H_{0}(0)$, to \mathscr{H}_{f}

Our argument

Assumption $\left(\mathrm{H}_{0}\right)$

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$, $\mathscr{X}=\mathbb{R}^{d}$ or $\mathscr{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$
- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below, such that H_{0} satisfies technical but mild hypotheses

Remark The above assumptions are satisfied

- by gapped, periodic Schrödinger operators
under standard hypotheses of relative boundedness of the
potentials w.r.t. $-\Delta$ (continuum case)

Our argument

Assumption $\left(\mathrm{H}_{0}\right)$

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$, $\mathscr{X}=\mathbb{R}^{d}$ or $\mathscr{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$
- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below, such that H_{0} satisfies technical but mild hypotheses

Remark The above assumptions are satisfied

- in most tight-binding models having spectral gap (discrete case)
- by gapped, periodic Schrödinger operators

Our argument

Assumption $\left(\mathrm{H}_{0}\right)$

- $\mathscr{H}:=L^{2}(\mathscr{X}) \otimes \mathbb{C}^{N}$, $\mathscr{X}=\mathbb{R}^{d}$ or $\mathscr{X}=$ discrete d-dimensional crystal $\subset \mathbb{R}^{d}$
- H_{0} is a periodic gapped operator on \mathscr{H} and bounded from below, such that H_{0} satisfies technical but mild hypotheses

Remark The above assumptions are satisfied

- in most tight-binding models having spectral gap (discrete case)
- by gapped, periodic Schrödinger operators

$$
H_{0}=\frac{1}{2}(-\mathrm{i} \nabla-A(x))^{2}+V(x)
$$

under standard hypotheses of relative boundedness of the potentials w.r.t. $-\Delta$ (continuum case)

Our argument

A model for the switching process

$$
H_{\varepsilon}(t):=H_{0}-\varepsilon f(t) X_{2}, \quad t \in I,
$$

where $[-1,0] \subset I \subset \mathbb{R}$ is compact interval and $\varepsilon \ll 1$.

Our argument

A model for the switching process

$$
H_{\varepsilon}(\eta t):=H_{0}-\varepsilon f(\eta t) X_{2}, \quad \eta t \in I,
$$

where $[-1,0] \subset I \subset \mathbb{R}$ is compact interval, $\varepsilon \ll 1$ and $\eta \ll 1$.

Our argument

Geometry of the quantum Hall system ($d=2 \&$ continuum):

Our argument

Geometry of the quantum Hall system ($d=2 \&$ continuum):

Notice that

- the configuration space is the plane \mathbb{R}^{2} (while in the context of QHE as pump effect a cylindrical or torus geometry is necessary) and so the system has infinite extent (no thermodynamic limit needed)

Our argument

Geometry of the quantum Hall system ($d=2 \&$ continuum):

Notice that

- the configuration space is the plane \mathbb{R}^{2} (while in the context of QHE as pump effect a cylindrical or torus geometry is necessary) and so the system has infinite extent (no thermodynamic limit needed)
- for every $\varepsilon>0$ the domain $\mathscr{D}\left(H_{\varepsilon}\right) \neq \mathscr{D}\left(H_{0}\right)$ and the spectrum $\sigma\left(H_{\varepsilon}\right)=\mathbb{R}$

Our argument

A trace functional to compute expectation values of extensive observable in extended states (due to periodicity). Let $\Gamma=\mathbb{Z}^{d}$

- Trace per unit volume: For any A being trace class on compact sets,

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 \mathbb{N}+1}} \frac{1}{L^{d}} \operatorname{Tr}\left(\chi_{L} A_{L}\right), \quad \chi_{L}:=\chi_{[-L / 2, L / 2]^{d}} .
$$

Our argument

A trace functional to compute expectation values of extensive observable in extended states (due to periodicity). Let $\Gamma=\mathbb{Z}^{d}$

- Trace per unit volume: For any A being trace class on compact sets,

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 \mathbb{N}+1}} \frac{1}{L^{d}} \operatorname{Tr}\left(\chi_{L} A_{L}\right), \quad \chi_{L}:=\chi_{[-L / 2, L / 2]^{d}} .
$$

- Properties of τ :

Our argument

A trace functional to compute expectation values of extensive observable in extended states (due to periodicity). Let $\Gamma=\mathbb{Z}^{d}$

- Trace per unit volume: For any A being trace class on compact sets,

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in \mathbb{N}+1}} \frac{1}{L^{d}} \operatorname{Tr}\left(\chi_{L} A \chi_{L}\right), \quad \chi_{L}:=\chi_{[-L / 2, L / 2]^{d}}
$$

- Properties of τ :
- Let A be periodic and trace class on compact sets. Then

$$
\tau(A)=\operatorname{Tr}\left(\chi_{1} A \chi_{1}\right)
$$

$\tau(A B)=\tau(B A)$.

Our argument

A trace functional to compute expectation values of extensive observable in extended states (due to periodicity). Let $\Gamma=\mathbb{Z}^{d}$

- Trace per unit volume: For any A being trace class on compact sets,

$$
\tau(A):=\lim _{\substack{L \rightarrow \infty \\ L \in 2 \mathbb{N}+1}} \frac{1}{L^{d}} \operatorname{Tr}\left(\chi_{L} A_{L}\right), \quad \chi_{L}:=\chi_{[-L / 2, L / 2]^{d}}
$$

- Properties of τ :
- Let A be periodic and trace class on compact sets. Then

$$
\tau(A)=\operatorname{Tr}\left(\chi_{1} A \chi_{1}\right) .
$$

- Let A, B be bounded and periodic operator, and $\tau(|A|)<\infty$. Then

$$
\tau(A B)=\tau(B A) .
$$

Our argument

- The physical state: $\rho(t)$ being the solution of the following Cauchy problem

$$
\left\{\begin{array}{l}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \rho(t)=\left[H_{\varepsilon}(\eta t), \rho(t)\right] \\
\rho\left(t_{0}\right)=\Pi_{0}, \quad \eta t_{0} \leq-1 .
\end{array}\right.
$$

One is interested in $\rho(t) \equiv \rho_{\varepsilon, \eta}(t)$ for any $t \geq 0$ (when the perturbation is fully switched on).

Our argument

- The physical state: $\rho(t)$ being the solution of the following Cauchy problem

$$
\left\{\begin{array}{l}
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \rho(t)=\left[H_{\varepsilon}(\eta t), \rho(t)\right] \\
\rho\left(t_{0}\right)=\Pi_{0}, \quad \eta t_{0} \leq-1 .
\end{array}\right.
$$

One is interested in $\rho(t) \equiv \rho_{\varepsilon, \eta}(t)$ for any $t \geq 0$ (when the perturbation is fully switched on).

- A enough good approximation of the physical state: non-equilibrium almost-stationary state (NEASS) $\Pi_{\mathcal{E}, n}$ such that for every $n, m \in \mathbb{N}$

$$
\sup _{\epsilon\left[\varepsilon^{m}, \varepsilon^{\frac{1}{m}}\right]}\left|\tau\left(A \rho_{\varepsilon, \eta}(t)\right)-\tau\left(A \Pi_{\varepsilon, n}\right)\right| \leq C \varepsilon^{n+1}\left(1+t^{d+1}\right), \forall t \geq 0
$$

for any suitable observable A. Inequality (\sharp) is proved for interacting models on lattices [Henheik, Teufel 2021, Teufel 2020, Monaco, Teufel 2019], while for this framework it is work in progress with Teufel.

Our argument

Construction of the NEASS at every order in ε
Consider the stationary perturbed Hamiltonian

$$
H_{\varepsilon}:=H_{0}-\varepsilon X_{2}
$$

Our argument

Construction of the NEASS at every order in ε

Consider the stationary perturbed Hamiltonian

$$
H_{\varepsilon}:=H_{0}-\varepsilon X_{2}
$$

Theorem[G. M., D. Monaco]
Under Assumption $\left(\mathrm{H}_{0}\right)$, we have that for any $n \in \mathbb{N}$ there exists a unique $\operatorname{NEASS} \Pi_{\varepsilon, n}$ such that

$$
\Pi_{\varepsilon, n}:=\mathrm{e}^{\mathrm{i} \varepsilon \mathscr{S}_{\varepsilon, n}} \Pi_{0} \mathrm{e}^{-\mathrm{i} \varepsilon \mathscr{S}_{\varepsilon, n}}=\sum_{j=0}^{n} \varepsilon^{j} \Pi_{j}+\varepsilon^{n+1} \Pi_{\mathrm{reminder}}(\varepsilon)
$$

where $\quad \mathscr{S}_{\varepsilon, n}:=\sum_{j=1}^{n} \varepsilon^{j-1} A_{j} \quad$ and $\quad\left[H_{\varepsilon}, \Pi_{\varepsilon, n}\right]=\varepsilon^{n+1}\left[R_{\varepsilon, n}, \Pi_{\varepsilon, n}\right]$.

Our argument

Construction of the NEASS at every order in ε

Consider the stationary perturbed Hamiltonian

$$
H_{\varepsilon}:=H_{0}-\varepsilon X_{2}
$$

Theorem[G. M., D. Monaco]
Under Assumption $\left(\mathrm{H}_{0}\right)$, we have that for any $n \in \mathbb{N}$ there exists a unique $\operatorname{NEASS} \Pi_{\varepsilon, n}$ such that

$$
\Pi_{\varepsilon, n}:=\mathrm{e}^{\mathrm{i} \varepsilon \mathscr{S}_{\varepsilon, n}} \Pi_{0} \mathrm{e}^{-\mathrm{i} \varepsilon \mathscr{S}_{\varepsilon, n}}=\sum_{j=0}^{n} \varepsilon^{j} \Pi_{j}+\varepsilon^{n+1} \Pi_{\mathrm{reminder}}(\varepsilon)
$$

where $\quad \mathscr{S}_{\varepsilon, n}:=\sum_{j=1}^{n} \varepsilon^{j-1} A_{j} \quad$ and $\quad\left[H_{\varepsilon}, \Pi_{\varepsilon, n}\right]=\varepsilon^{n+1}\left[R_{\varepsilon, n}, \Pi_{\varepsilon, n}\right]$.

Our argument

The proof relies on the following

Lemma

Under Assumption $\left(\mathrm{H}_{0}\right)$, decompose $\mathscr{H}=\operatorname{Ran} \Pi_{0} \oplus\left(\operatorname{Ran} \Pi_{0}\right)^{\perp}$ and correspondingly operators as

$$
A=A^{\mathrm{D}}+A^{\mathrm{OD}}
$$

where $A^{\mathrm{D}}=\Pi_{0} A \Pi_{0}+\Pi_{0}^{\perp} A \Pi_{0}^{\perp}, A^{\mathrm{OD}}=\Pi_{0} A \Pi_{0}^{\perp}+\Pi_{0}^{\perp} A \Pi_{0}$. Define the Liouvillian

$$
\mathscr{L}_{H_{0}}(A)=-\mathrm{i}\left[H_{0}, A\right] .
$$

Then the Liouvillian is invertible on OD operators (thanks to the gap condition):
For any $B=B^{\mathrm{OD}}$, consider $\mathscr{L}_{H_{0}}(A)=B$

Our argument

The proof relies on the following

Lemma

Under Assumption $\left(\mathrm{H}_{0}\right)$, decompose $\mathscr{H}=\operatorname{Ran} \Pi_{0} \oplus\left(\operatorname{Ran} \Pi_{0}\right)^{\perp}$ and correspondingly operators as

$$
A=A^{\mathrm{D}}+A^{\mathrm{OD}}
$$

where $A^{\mathrm{D}}=\Pi_{0} A \Pi_{0}+\Pi_{0}^{\perp} A \Pi_{0}^{\perp}, A^{\mathrm{OD}}=\Pi_{0} A \Pi_{0}^{\perp}+\Pi_{0}^{\perp} A \Pi_{0}$.
Define the Liouvillian

$$
\mathscr{L}_{H_{0}}(A)=-\mathrm{i}\left[H_{0}, A\right] .
$$

Then the Liouvillian is invertible on OD operators (thanks to the gap condition):
For any $B=B^{\mathrm{OD}}$, consider $\mathscr{L}_{H_{0}}(A)=B$

$$
\Rightarrow A=A^{\mathrm{OD}}=\frac{1}{2 \pi} \oint_{C} \mathrm{~d} z\left(H_{0}-z \mathrm{Id}\right)^{-1}\left[\Pi_{0}, B\right]\left(H_{0}-z \mathrm{Id}\right)^{-1} .
$$

Our argument

The proof relies on the following
Lemma
Under Assumption (H_{0}), then the Liouvillian is invertible on OD operators (thanks to the gap condition):
For any $B=B^{\mathrm{OD}}$, consider $\mathscr{L}_{H_{0}}(A)=B$

$$
\Longrightarrow A=A^{\mathrm{OD}}=\frac{1}{2 \pi} \oint_{C} \mathrm{~d} z\left(H_{0}-z \mathrm{Id}\right)^{-1}\left[\Pi_{0}, B\right]\left(H_{0}-z \mathrm{Id}\right)^{-1} .
$$

Our argument

The proof relies on the following
Lemma
Under Assumption (H_{0}), then the Liouvillian is invertible on OD operators (thanks to the gap condition):
For any $B=B^{\mathrm{OD}}$, consider $\mathscr{L}_{H_{0}}(A)=B$

$$
\Longrightarrow A=A^{\mathrm{OD}}=\frac{1}{2 \pi} \oint_{C} \mathrm{~d} z\left(H_{0}-z \mathrm{Id}\right)^{-1}\left[\Pi_{0}, B\right]\left(H_{0}-z \mathrm{Id}\right)^{-1} .
$$

For example

$$
\mathscr{S}_{\varepsilon, 1}=-\mathscr{L}_{H_{0}}^{-1}\left(\left[\left[X_{2}, \Pi_{0}\right], \Pi_{0}\right]\right)=-\mathscr{L}_{H_{0}}^{-1}\left(X_{2}^{\mathrm{OD}}\right)
$$

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Theorem[G. M., D. Monaco]
Consider the Hamiltonian $H_{\varepsilon}=H_{0}-\varepsilon X_{2}$, where H_{0} satisfies Assumption (H_{0}). Then for every $n \in \mathbb{N}$ we have that

$$
\tau\left(J_{1} \Pi_{\varepsilon, n}\right)=\varepsilon \sigma_{\text {Hall }}+\mathscr{O}\left(\varepsilon^{n+1}\right)
$$

where $\Pi_{\varepsilon, n}$ is as in the previous Theorem and

$$
\sigma_{\text {Hall }}:=\mathrm{i} \tau\left(\Pi_{0}\left[\left[\Pi_{0}, X_{1}\right],\left[\Pi_{0}, X_{2}\right]\right]\right)
$$

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Theorem[G. M., D. Monaco]
Consider the Hamiltonian $H_{\varepsilon}=H_{0}-\varepsilon X_{2}$, where H_{0} satisfies Assumption $\left(\mathrm{H}_{0}\right)$. Then for every $n \in \mathbb{N}$ we have that

$$
\tau\left(J_{1} \Pi_{\varepsilon, n}\right)=\varepsilon \sigma_{\text {Hall }}+\mathscr{O}\left(\varepsilon^{n+1}\right)
$$

where $\Pi_{\varepsilon, n}$ is as in the previous Theorem and

$$
\sigma_{\text {Hall }}:=\mathrm{i} \tau\left(\Pi_{0}\left[\left[\Pi_{0}, X_{1}\right],\left[\Pi_{0}, X_{2}\right]\right]\right) .
$$

Remark

Up to prove the validity of the NEASS approximation for the state of the system (in the sense of inequality (\sharp)),

$$
\tau\left(J_{1} \rho_{\varepsilon, \eta}(t)\right)=\varepsilon \sigma_{\text {Hall }}+\mathscr{O}\left(\varepsilon^{n+1}\right), \quad t \geq 0
$$

is obtained.

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Sketch of the proof
Let's recall $J_{1} \Pi_{\varepsilon, n}=\mathrm{i}\left[H_{0}, X_{1}\right] \Pi_{\varepsilon, n}$

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Sketch of the proof
By using the cyclicity of $\tau(\cdot)$ and $\left(\Pi_{\varepsilon, n}\right)^{2}=\Pi_{\varepsilon, n}$
$\tau\left(\left[H_{0}, X_{1}\right] \Pi_{\varepsilon, n}\right)=\tau\left(\Pi_{\varepsilon, n}\left[H_{\varepsilon}, X_{1}\right] \Pi_{\varepsilon, n}\right)$

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Sketch of the proof
In view of $\left[H_{\varepsilon}, \Pi_{\varepsilon, n}\right]=\varepsilon^{n+1}\left[R_{\varepsilon, n}, \Pi_{\varepsilon, n}\right]$
$\tau\left(\left[H_{0}, X_{1}\right] \Pi_{\varepsilon, n}\right)=\tau\left(\Pi_{\varepsilon, n}\left[H_{\varepsilon}, X_{1}\right] \Pi_{\varepsilon, n}\right)$
$=\tau\left(\left[\Pi_{\varepsilon, n} H_{\varepsilon} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right)+\varepsilon^{n+1} \tau\left(\Pi_{\varepsilon, n}\left[\left[\Pi_{\varepsilon, n}, R_{\varepsilon, n}\right],\left[X_{1}, \Pi_{\varepsilon, n}\right]\right] \Pi_{\varepsilon, n}\right)$

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Sketch of the proof
By using $H_{\varepsilon}:=H_{0}-\varepsilon X_{2}$

$$
\begin{aligned}
\tau & \tau\left(\left[H_{0}, X_{1}\right] \Pi_{\varepsilon, n}\right)=\tau\left(\Pi_{\varepsilon, n}\left[H_{\varepsilon}, X_{1}\right] \Pi_{\varepsilon, n}\right) \\
= & \tau\left(\left[\Pi_{\varepsilon, n} H_{\varepsilon} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right)+\varepsilon^{n+1} \tau\left(\Pi_{\varepsilon, n}\left[\left[\Pi_{\varepsilon, n}, R_{\varepsilon, n}\right],\left[X_{1}, \Pi_{\varepsilon, n}\right]\right] \Pi_{\varepsilon, n}\right) \\
= & \tau\left(\left[\Pi_{\varepsilon, n} H_{0} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right)-\varepsilon \tau\left(\left[\Pi_{\varepsilon, n} X_{2} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right) \\
& +\varepsilon^{n+1} \tau\left(\Pi_{\varepsilon, n}\left[\left[\Pi_{\varepsilon, n}, R_{\varepsilon, n}\right],\left[X_{1}, \Pi_{\varepsilon, n}\right]\right] \Pi_{\varepsilon, n}\right)
\end{aligned}
$$

Purely linear response of the quantum Hall current to space-adiabatic perturbations

Sketch of the proof

$$
\begin{aligned}
\tau & \left(\left[H_{0}, X_{1}\right] \Pi_{\varepsilon, n}\right)=\tau\left(\Pi_{\varepsilon, n}\left[H_{\varepsilon}, X_{1}\right] \Pi_{\varepsilon, n}\right) \\
= & \tau\left(\left[\Pi_{\varepsilon, n} H_{\varepsilon} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right)+\varepsilon^{n+1} \tau\left(\Pi_{\varepsilon, n}\left[\left[\Pi_{\varepsilon, n}, R_{\varepsilon, n}\right],\left[X_{1}, \Pi_{\varepsilon, n}\right]\right] \Pi_{\varepsilon, n}\right) \\
= & \tau\left(\left[\Pi_{\varepsilon, n} H_{0} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right)-\varepsilon \tau\left(\left[\Pi_{\varepsilon, n} X_{2} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right) \\
& +\varepsilon^{n+1} \tau\left(\Pi_{\varepsilon, n}\left[\left[\Pi_{\varepsilon, n}, R_{\varepsilon, n}\right],\left[X_{1}, \Pi_{\varepsilon, n}\right]\right] \Pi_{\varepsilon, n}\right)
\end{aligned}
$$

We conclude noticing that $\tau\left(\left[\Pi_{\varepsilon, n} H_{0} \Pi_{\varepsilon, n}, \Pi_{\varepsilon, n} X_{1} \Pi_{\varepsilon, n}\right]\right)=0$ by cyclicity of the trace, and the Chern-Simons-like formula defining $P_{U}:=U P U^{-1}$, one has that
$\tau\left(\left[P_{U} X_{1} P_{U}, P_{U} X_{2} P_{U}\right]\right)=\tau\left(\left[P X_{1} P, P X_{2} P\right]\right)$ for U, P periodic and regular enough.

What next?

- Validity of the NEASS approximation for the physical state in one-body approximation in the continuum (sub-project: energy and space estimates for the physical evolution, similar to [M. 2022])

What next?

- Validity of the NEASS approximation for the physical state in one-body approximation in the continuum (sub-project: energy and space estimates for the physical evolution, similar to [M. 2022])
- Inclusion of interactions on a lattice [Teufel 2020; Henheik, Teufel 2021]

