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Purely linear response of the quantum Hall current

In the interpretation of QHE as a bulk e�ect:

Theorem [G. M., D. Monaco] (informal statement)
For non-interacting, periodic electrons at zero temperature under a
spectral gap assumption:

j1 =σB E2+O(E2
∞).

Its proof is based on space-adiabatic perturbation theory [Kato,
Nenciu, Teufel, . . . ]



Comments on existing literature

In the interpretation of QHE as a pump e�ect:

Ï The analogous result (informal statement)

< I2 >=σP V1+O(V1
∞)

is due to [Klein, Seiler 1990] in the continuum (recently in the
discrete [Bachmann, De Roeck, Fraas, Lange 2021]) setting for
many-body electron gases at zero temperature under a
spectral gas assumption.

Ï Their proofs is based on the physical magnetic-�ux insertion

argument by [Laughlin 1981], made rigorous by the use of the
time-adiabatic perturbation theory [Avron, Seiler 1985; Avron,
Seiler, Ya�e 1987; Avron, Seiler, Simon 1994, . . . ].



Comments on existing literature

In the interpretation of QHE as a pump e�ect:

Ï The analogous result (informal statement)

< I2 >=σP V1+O(V1
∞)

is due to [Klein, Seiler 1990] in the continuum (recently in the
discrete [Bachmann, De Roeck, Fraas, Lange 2021]) setting for
many-body electron gases at zero temperature under a
spectral gas assumption.

Ï Their proofs is based on the physical magnetic-�ux insertion

argument by [Laughlin 1981], made rigorous by the use of the
time-adiabatic perturbation theory [Avron, Seiler 1985; Avron,
Seiler, Ya�e 1987; Avron, Seiler, Simon 1994, . . . ].



Review: Klein�Seiler's argument
On Λ := [0,L1]× [0,L2]⊂R2 consider (a fermionic many-body
version of)

H̃(φ1,φ2) := 1

2

(
pA−φ1 e1

L1
−φ2 e2

L2

)2
+W (x)

with periodic boundary condition, where

Ï pA :=−i∇−A(x), where A models an external magnetic �eld

Ï φi
ei
Li

is a vector potential �generating a magnetic �ux φi

through loop in the i-th direction�

Ï W stands for all interaction among the particles and of the
particles with impurities

Ï Beyond regularity assumptions, suppose that H̃(φ1,φ2) has an
isolated spectral component σ∗(φ1,φ2), with corresponding
�nite rank spectral projection P̃(φ1,φ2)



Review: Klein�Seiler's argument
Geometry of the quantum Hall system:

Notice that H̃(φ1,φ2) is 2π-periodic in φ1, φ2 up to a gauge
transformation: de�ning G (φ1,φ2) := ei(φ1X1/L1+φ2X2/L2)

Ĥ(φ1,φ2) :=G∗(φ1,φ2)H̃(φ1,φ2)G (φ1,φ2)

= Ĥ(φ1+2π,φ2)= Ĥ(φ1,φ2+2π)
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Review: Klein�Seiler's argument
Time-dependent Hamiltonian˜̃Hτ(t,Φ) := H̃ (φ1 = f (t/τ),φ2 =Φ) , Hτ(s ,Φ) := ˜̃Hτ(sτ,Φ)

Ï η := τ−1: time-adiabatic parameter (η≪ 1)

Ï s := t/τ: scaled time

Ï φ′
1
(t)= f ′(s)η∝V1: Hall voltage



Review: Klein�Seiler's argument

Ï Physical evolution:

i∂sUτ(s ,Φ)= τHτ(s ,Φ)Uτ(s ,Φ), Uτ(0,Φ)= Id

Ï Physical state:

Pτ(s ,Φ)=Uτ(s ,Φ)P(0,Φ)U∗
τ (s ,Φ), P(s ,Φ)=χσ∗(s ,Φ)(H(s ,Φ))

Ï Adiabatic evolution:

i∂sUad(s ,Φ)= τHad(s ,Φ)Uad(s ,Φ), Uad(0,Φ)= Id

where

Had(s ,Φ) :=Hτ(s ,Φ)+ i

τ
[∂sP(s ,Φ),P(s ,Φ)]
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Review: Klein�Seiler's argument

Theorem (Adiabatic theorem)
Under previous assumptions, one has

Ï The adiabatic evolution intertwines the spectral subspaces:

Uad(s ,Φ)P(0,Φ)=P(s ,Φ)Uad(s ,Φ)

Ï Since Hτ(s ,Φ) is constant near s = 1 (supp f ′ ⊂ (0,1))

U∗
ad(1,Φ)Uτ(1,Φ)P(0,Φ)=P(0,Φ)U∗

ad(1,Φ)Uτ(1,Φ)+O(τ−∞)



Review: Klein�Seiler's argument
The Hall current intensity

I2(s ,Φ) :=Tr(Pτ(s ,Φ)∂ΦHτ(s ,Φ)) .

The Φ-average transported charge

〈Q2〉 := 1

2π

∫
2π

0

dΦ

(
τ

∫
1

0

ds I2(s ,Φ)

)
= i

2π

∫
2π

0

dΦ
∫

1

0

ds ∂sTr(P(0,Φ)U∗
τ (s ,Φ)∂ΦUτ(s ,Φ))

= i

2π

∫
∂([0,1]×[0,2π])

Tr(P(0,Φ)U∗
ad(s ,Φ)dUad(s ,Φ))+O(τ−∞)

= 1

2π︸︷︷︸
=e2/h

i
∫
T2

dφ1dφ2Tr
(
P̂[∂φ1P̂ ,∂φ2P̂]

)
︸ ︷︷ ︸

Chern number ∈Z

+O(τ−∞)

where last equality uses the Chern�Simons formula:

TrPUdPU ∧dPU =TrPdP ∧dP +d
(
TrPU−1dU

)



Review: Klein�Seiler's argument
The Hall current intensity

I2(s ,Φ) :=Tr(Pτ(s ,Φ)∂ΦHτ(s ,Φ)) .

The Φ-average transported charge

〈Q2〉 := 1

2π

∫
2π

0

dΦ

(
τ

∫
1

0

ds I2(s ,Φ)

)
= i

2π

∫
2π

0

dΦ
∫

1

0

ds ∂sTr(P(0,Φ)U∗
τ (s ,Φ)∂ΦUτ(s ,Φ))

= i

2π

∫
∂([0,1]×[0,2π])

Tr(P(0,Φ)U∗
ad(s ,Φ)dUad(s ,Φ))+O(τ−∞)

= 1

2π︸︷︷︸
=e2/h

i
∫
T2

dφ1dφ2Tr
(
P̂[∂φ1P̂ ,∂φ2P̂]

)
︸ ︷︷ ︸

Chern number ∈Z

+O(τ−∞)

where last equality uses the Chern�Simons formula:

TrPUdPU ∧dPU =TrPdP ∧dP +d
(
TrPU−1dU

)



Our argument

Assumption (H0)

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a operator on H and bounded from below



Our argument

Assumption (H0)

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below



Our argument

Assumption (H0)

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below

Ï Bravais lattice of translations Γ≃Zd

[H0,Tγ]= 0 ∀γ ∈ Γ

Ï via Bloch�Floquet representation H0 ≃
∫ ⊕
Td dk H0(k),

H0(k) acts on H f := L2(C1)⊗CN , C1 :=X /Γ



Our argument

Assumption (H0)

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below

Ï Π0 = Fermi projection on occupied bands below the spectral
gap is in Bτ

1



Our argument

Assumption (H0)

Ï H := L2(X )⊗CN ,
X =Rd or X = discrete d-dimensional crystal⊂Rd

Ï H0 is a periodic gapped operator on H and bounded from
below, such that H0 satis�es technical but mild hypotheses

Ï
H0 :R

d →L (Df,H f) , k 7→H0(k)

is a smooth equivariant map taking values in the self-adjoint
operators with dense domain Df ⊂H f. L (Df,H f) is the space
of bounded operators from Df, equipped with the graph norm
of H0(0), to H f
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Remark The above assumptions are satis�ed
Ï in most tight-binding models having spectral gap (discrete

case)

Ï by gapped, periodic Schrödinger operators

H0 =
1

2
(−i∇−A(x))2+V (x)

under standard hypotheses of relative boundedness of the
potentials w.r.t. −∆ (continuum case)
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Our argument

A model for the switching process

Hε(t) :=H0−εf (t)X2, t ∈ I ,

where [−1,0]⊂ I ⊂R is compact interval and ε≪ 1.

t−1

1
f



Our argument

A model for the switching process

Hε(ηt) :=H0−εf (ηt)X2, ηt ∈ I ,

where [−1,0]⊂ I ⊂R is compact interval, ε≪ 1 and η≪ 1.

t−1

1
f



Our argument
Geometry of the quantum Hall system (d = 2 & continuum):
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Notice that

Ï the con�guration space is the plane R2 (while in the context of
QHE as pump e�ect a cylindrical or torus geometry is
necessary) and so the system has in�nite extent (no
thermodynamic limit needed)

Ï for every ε> 0 the domain D(Hε) ̸=D(H0) and the spectrum
σ(Hε)=R
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Our argument

A trace functional to compute expectation values of extensive
observable in extended states (due to periodicity). Let Γ=Zd

Ï Trace per unit volume: For any A being trace class on
compact sets,

τ(A) := lim
L→∞

L∈2N+1

1

Ld
Tr(χLAχL), χL :=χ[−L/2,L/2]d .

Ï Properties of τ:
Ï Let A be periodic and trace class on compact sets. Then

τ(A)=Tr(χ1Aχ1).

Ï Let A, B be bounded and periodic operator, and τ(|A|)<∞.
Then

τ(AB)= τ(BA).
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Our argument
Ï The physical state: ρ(t) being the solution of the following

Cauchy problem {
i d

dtρ(t)= [Hε(ηt),ρ(t)]

ρ(t0)=Π0, ηt0 ≤−1.

One is interested in ρ(t)≡ ρε,η(t) for any t ≥ 0 (when the
perturbation is fully switched on).

Ï A enough good approximation of the physical state:
non-equilibrium almost-stationary state (NEASS) Πε,n such
that for every n,m ∈N

sup
η∈[εm ,ε

1
m ]

∣∣τ(Aρε,η(t))−τ(AΠε,n)
∣∣≤Cεn+1

(
1+ td+1

)
, ∀t ≥ 0 (♯)

for any suitable observable A.
Inequality (♯) is proved for interacting models on lattices
[Henheik, Teufel 2021, Teufel 2020, Monaco, Teufel 2019],
while for this framework it is work in progress with Teufel.
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Consider the stationary perturbed Hamiltonian

Hε :=H0−εX2

Theorem[G. M., D. Monaco]

Under Assumption (H0), we have that for any n ∈N there exists a
unique NEASS Πε,n such that

Πε,n := eiεSε,nΠ0 e−iεSε,n =
n∑
j=0

εjΠj +εn+1Πreminder(ε)

where Sε,n :=
n∑
j=1

εj−1Aj and [Hε,Πε,n]= εn+1[Rε,n,Πε,n].
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Our argument
The proof relies on the following

Lemma
Under Assumption (H0), decompose H =RanΠ0⊕ (RanΠ0)

⊥ and
correspondingly operators as

A=AD +AOD

where AD =Π0AΠ0+Π⊥
0
AΠ⊥

0
, AOD =Π0AΠ

⊥
0
+Π⊥

0
AΠ0.

De�ne the Liouvillian

LH0
(A)=−i[H0,A].

Then the Liouvillian is invertible on OD operators (thanks to the
gap condition):
For any B =BOD, consider LH0

(A)=B

=⇒A=AOD = 1

2π

∮
C
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Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Theorem[G. M., D. Monaco]
Consider the Hamiltonian Hε =H0−εX2, where H0 satis�es
Assumption (H0). Then for every n ∈N we have that

τ(J1Πε,n)= εσHall +O(εn+1),

where Πε,n is as in the previous Theorem and

σHall := iτ(Π0 [[Π0,X1], [Π0,X2]]).

Remark
Up to prove the validity of the NEASS approximation for the state
of the system (in the sense of inequality (♯)),

τ(J1ρε,η(t))= εσHall +O(εn+1), t ≥ 0

is obtained.
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Sketch of the proof

Let's recall J1Πε,n = i[H0,X1]Πε,n
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τ([H0,X1]Πε,n)= τ(Πε,n[Hε,X1]Πε,n)
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Πε,n

[
[Πε,n,Rε,n], [X1,Πε,n]

]
Πε,n

)
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= τ([Πε,nHεΠε,n,Πε,nX1Πε,n])+εn+1τ
(
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[
[Πε,n,Rε,n], [X1,Πε,n]

]
Πε,n

)
= τ([Πε,nH0Πε,n,Πε,nX1Πε,n])−ετ([Πε,nX2Πε,n,Πε,nX1Πε,n])

+εn+1τ(
Πε,n

[
[Πε,n,Rε,n], [X1,Πε,n]

]
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Purely linear response of the quantum Hall current to
space-adiabatic perturbations

Sketch of the proof

τ([H0,X1]Πε,n)= τ(Πε,n[Hε,X1]Πε,n)

= τ([Πε,nHεΠε,n,Πε,nX1Πε,n])+εn+1τ
(
Πε,n

[
[Πε,n,Rε,n], [X1,Πε,n]

]
Πε,n

)
= τ([Πε,nH0Πε,n,Πε,nX1Πε,n])−ετ([Πε,nX2Πε,n,Πε,nX1Πε,n])

+εn+1τ(
Πε,n

[
[Πε,n,Rε,n], [X1,Πε,n]

]
Πε,n

)
We conclude noticing that τ([Πε,nH0Πε,n,Πε,nX1Πε,n])= 0 by
cyclicity of the trace, and the Chern�Simons-like formula de�ning
PU :=UPU−1, one has that
τ([PUX1PU ,PUX2PU ])= τ([PX1P ,PX2P]) for U ,P periodic and
regular enough.



What next?

Ï Validity of the NEASS approximation for the physical state in
one-body approximation in the continuum (sub-project: energy
and space estimates for the physical evolution, similar to [M.
2022])

Ï Inclusion of interactions on a lattice [Teufel 2020; Henheik,
Teufel 2021]
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