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What is the bulk-edge correspondence?

Physically:
Integer Quantum Hall Effect.
Linear response theory in the
infinite volume limit gives σH ∈ Z.
Analysis of “edge modes/currents”
at the boundary of the sample
gives σE ∈ Z

At zero temperature, with (mobility)
gap

σH = σE ∈ Z

Mathematically:

Bulk system defined on L2(R2).

Edge system defined by cutting the
bulk one and imposing Dirichlet
boundary conditions.

Is there any mathematical
relation/correspondence between
the two systems?

Our goal: Prove bulk-edge correspondence (for transport coefficients) at any
temperature.

⇒ Longer route than expected!
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Mathematical framework - The bulk-edge model

The bulk dynamics is described by a magnetic random Schroedinger operator
on L2(R2):

Hω,b =
1

2
(−i∇−A− bA)

2
+ V + Vω

Let τb,γ be a family of magnetic translations compatible with the Landau
gauge, and T (γ) the canonical action of Z2 on Θ (T (γ)ω = {ωη−γ}η∈Z2 )

⇒ τb,γHω,bτb,−γ = HT (γ)ω,b, ∀ γ ∈ Z2 .

⇒ (Hω,b)ω∈Θ is ergodic with respect to the lattice Z2

→ No assumption on the spectrum of the model!
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Mathematical framework - The edge model

Consider the half-plane

E :=
{

(x1, x2) ∈ R2| x2 ≥ 0
}
.

The edge dynamics is described by the Hamiltonian HE
ω,b living in L2(E)→

HE
ω,b is the natural choice given by the Dirichlet realization of Hω,b in E
→ we cut the bulk system.

(HE
ω,b)ω∈Θ is still ergodic with respect to the one-dimensional lattice generated

by the vector (1, 0):

τb,γH
E
ω,bτb,−γ = HE

T (γ)ω,b ∀ γ = (γ1, 0) ∈ Z2 .
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Mathematical framework - The edge model

L

Ω

S∞

SL

E
Ω := [0, 1]2

is the unit cell of the bulk Hamiltonian
and χΩ is characteristic function of Ω.

SL := [0, 1]× [0, L]

χL characteristic function of SL.

S∞ := [0, 1]× [0,∞]

χ∞ characteristic function of S∞.
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(Edge) Thermodynamic pressure
Let Fµ,T (x) = −T ln

(
1 + e−(x−µ)/T

)
be the grandcanonical potential.

Remember that F ′µ,T (x) = 1
e(x−µ)/T+1

is the Fermi-Dirac distribution

Bulk pressure
The bulk pressure is defined as the thermodynamic limit of the density of
grandcanonical potential

pµ,T (b) := −E
(
Tr
(
χΩFµ,T (H•,b)

))
= − lim

L→∞

1

L2
Tr(χΛLFµ,T (Hω,b)) for a.e. ω.

What about the edge?

Edge pressure

p
(E)
µ,T (b) := − lim

L→∞
P

(L,ω)
µ,T (b) := − lim

L→∞

1

L
Tr
(
χLFµ,T (HE

ω,b)
)

for a.e. ω.

→ These are the only two ingredients that we need!
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Bulk-edge correspondence at positive temperature

Theorem [H. Cornean, M.M., S.Teufel]

First, pµ,T (·) and P (L,ω)
µ,T (·) are everywhere differentiable and, for a.e. ω ∈ Θ:

p
(E)
µ,T (b) = lim

L→∞
P

(L,ω)
µ,T (b) = pµ,T (b), lim

L→∞

dP
(L,ω)
µ,T

db
(b) =

dpµ,T
db

(b).

Moreover, let g ∈ C1([0, 1]) be any function such that g(0) = 1 and g(1) = 0.
Define χ̃L(x) := χL(x)g(x2/L). Then independently of g we have:

dpµ,T
db

(b) = lim
L→∞

E
(
Tr
{
χ̃Li

[
HE

•,b, X1

]
F ′µ,T (HE

•,b)
})
. (?)

• (?) holds true at every temperature.
• (?) holds independently of the spectrum of Hω,b.
• Purely analytic proof.
• Stability w.r.t. boundary perturbations.
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Stability w.r.t. boundary perturbations

The main result

dpµ,T
db

(b) = lim
L→∞

E
(
Tr
{
χ̃Li

[
HE

•,b, X1

]
F ′µ,T (HE

•,b)
})
. (?)

still hold true in the case where the edge Hamiltonian is perturbed by a
smooth potential Wω supported in a finite strip near the edge.

Scalar potential Wω, s.t. supp(Wω) ⊆ R× [0, d], d > 0.
HE,W
ω,b = HE

ω,b +Wω, densely defined on L2(E) with Dirichlet boundary
condition at x2 = 0.
Assume that (HE,W

ω,b )ω∈Θ is still ergodic on the one-dimensional lattice
generated by (1, 0).

lim
L→∞

E(Tr(χ̃Li
[
HE,W

•,b , X1

]
F ′(HE,W

•,b ))) = lim
L→∞

E
(
Tr
(
χ̃Li

[
HE

•,b, X1

]
F ′(HE

•,b)
))

⇒ Stability w.r.t. boundary perturbations!
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Physical interpretation: the bulk side

Left-hand side (the bulk):

−edpµ,T
db

(b) = mµ,T (b)

is just the definition of the bulk magnetization.

What about the right-hand side (the edge)?

lim
L→∞

E
(
Tr
{
χ̃Li

[
HE

•,b, X1

]
F ′µ,T (HE

•,b)
})

F ′µ,T is the Fermi-Dirac distribution.

⇒ limL→∞ E
(

Tr
{
χ̃Li

[
HE

•,b, X1

]
F ′µ,T (HE

•,b)
})

is the total edge current!

(→ the limit is required because χ∞i
[
HE

•,b, X1

]
F ′µ,T (HE

•,b) is not trace class at
positive temperature! )
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The edge side

jB1 (x2) :=

∫ 1

0

dx1 E
(
i [Hb,•, X1]F ′µ,T (Hb,•)

)
(x1, x2;x1, x2)

jE1 (x2) :=

∫ 1

0

dx1 E
(
i
[
HE
b,•, X1

]
F ′µ,T (HE

b,•)
)

(x1, x2;x1, x2)
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∫ 1

0

dx1 E
(
i
[
HE
b,•, X1

]
F ′µ,T (HE

b,•)
)

(x1, x2;x1, x2)

Theorem [M.M., B. Støttrup]
jE1 and jB1 are smooth functions in R× (0,+∞) and

jE1 (x2)− jB1 (x2) = O(x−∞2 ) x2 → +∞
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The edge side
The total edge current is defined as

IE1 (µ, T, b) := lim
L→∞

∫ L

0

(
jE1 (x2)−

(
1− g(x2/L)

)
jB1 (x2)

)
dx2

= lim
L→∞

∫ L

0

g(x2/L)jE1 (x2) dx2 .

x2

L

1
1− g(·/L)g(·/L)

jE1

jB1
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The edge side

IE1 (µ, T, b) := lim
L→∞

∫ L

0

g(x2/L)jE1 (x2) dx2 .

→We show that the value of IE1 is actually independent of the specific
cut-off function g and of the specific potential at the boundary ! → It is a
very robust quantity that lives near the edge!

x2

L

1
1− g(·/L)g(·/L)

jE1

jB1
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Physical interpretation II

Therefore we get the bulk-edge correspondence in the form:

mµ,T (b) = −eIE1 (µ, T, b).

Literature:
• Bulk side: Thorough analysis of the thermodynamic limit of the

magnetization. Landau, Angelescu-Bundaru-Nenciu,
Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc...
• Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz

(JSP 1994).
Both restricted to pure Landau operator and high temperature
(Maxwell-Boltzmann distribution).
→ our proof is far more general and allow to use the physically relevant
Fermi-Dirac distribution (actually any Schwartz function!).

→What about the usual bulk-edge correspondence of transport coefficients
(σH = σE)?
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Zero-temperature limit and bulk-edge correspondence

At positive temperature the pressure is C2 in b and µ (Briet-Savoie RMP12):

∂µpµ,T (b) = nµ,T (b) = E(Tr(χΩF
′
µ,T (Hω,b)))

where nµ,T (b) is the particle density.

⇒ ∂µmµ,T (b) = ∂µ∂bpµ,T (b) = ∂bnµ,T (b)

Assume that the almost sure spectrum Σ(b0) of the bulk Hamiltonian Hω,b0 ,
b0 ∈ R, has a gap that includes the interval [e−, e+](3 µ) with e− < e+.
→ σ0(b) := Σ(b) ∩ (−∞, e−), Pω,b the spectral projection onto σ0(b).

Středa formula [Cornean,Monaco, M.M. JEMS 21, ...]

2π∂bnµ,0(b0) = C0 := 2πE
(

Tr
(
χΩP•,b0 i

[
[X1, P•,b0 ], [X2, P•,b0 ]

]) )
= σH (∈ Z)

C0 is the Chern character of the projection Pω,b0 .

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 12 / 20



Zero-temperature limit and bulk-edge correspondence

At positive temperature the pressure is C2 in b and µ (Briet-Savoie RMP12):

∂µpµ,T (b) = nµ,T (b) = E(Tr(χΩF
′
µ,T (Hω,b)))

where nµ,T (b) is the particle density.

⇒ ∂µmµ,T (b) = ∂µ∂bpµ,T (b) = ∂bnµ,T (b)

Assume that the almost sure spectrum Σ(b0) of the bulk Hamiltonian Hω,b0 ,
b0 ∈ R, has a gap that includes the interval [e−, e+](3 µ) with e− < e+.
→ σ0(b) := Σ(b) ∩ (−∞, e−), Pω,b the spectral projection onto σ0(b).
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Consider a "smooth characteristic function": Any smooth function 0 ≤ f0 ≤ 1
which equals 1 on (−∞, e−] and 0 on [e+,∞)⇒ f0(Hω,b) = Pω,b.

• Maxwell relation: ∂µmµ,T (b) = ∂µ∂bpµ,T (b) = ∂bnµ,T (b)

• Středa formula: 2π∂bnµ,0(b0) = σH(µ, 0, b)

• Our theorem : mµ,T (b) = −eIE(µ, T, b)

⇒We recover the usual bulk-edge correspondence at zero temperature!

σH = eE
(
Tr
{
χ∞i

[
HE

•,b0 , X1

]
f ′0(HE

•,b0)
})

= σE(= ∂µI
E
1 )

Key ingredients: Středa formula + Zero-temperature Hall conductivity

→ Starting point :
mµ,T (b) = IE(µ, T, b).

⇒ there might be states that contribute to the statistical derivative
(∂µI(µ, T, b)) but that do not contribute to transport!
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New approach to bulk-edge correspondence based on magnetic perturbation
theory
→ Magnetic derivative of bulk/edge quantity.
Versatile approach suitable for the many-body setting
(Work in progress with J. Lampart, S. Teufel, T. Wessel)

Key ingredients: Středa formula + Zero-temperature Hall conductivity
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Key ingredients: Středa formula + Zero-temperature Hall conductivity

→ Problems:
• Středa formula holds true only at zero temperature and with µ in a

spectral gap.
• Linear response theory at positive temperature? (Aizenman-Graf 1996;

Cornean-Nenciu-Pedersen 2010 )
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Heuristic physical picture
First emphasized by Haidu-Gummich ’83, Cooper-Halperin-Ruzin ’96, Středa
2006 -> Elgart-Graf-Schenker 2005
“For a quantum mechanical system in the presence of an applied magnetic
field, however, there may be nonzero circulating currents even in a situation of
thermodynamic equilibrium, as was noted above. We shall find it convenient
to break the currents into a “transport” part and a “magnetization” part...”

Cooper, Halperin, Ruzin. Phys. Rev. B 1996

Splitting the edge current density

jE(x) = jEmag(x) + jEtr(x)

Splitting the magnetization

mµ,T (b) = mcirc
µ,T (b) +mres

µ,T (b)

jEmag is a pure "magnetization current density", that is

jEmag(x) := ∇×m(circ)
µ,T (x).

→Why this magnetization current influences only the edge?
⇒ IEmag =

∫∞
−∞ dx2j

E
mag(x) =

∫∞
−∞ dx2∂2(ϕ(x2)m

(circ)
µ,T ) = m

(circ)
µ,T .

⇒ IE = IEmag + IEtr = m
(circ)
µ,T (b) +m

(res)
µ,T (b) = mµ,T (b)

In order to get the correct transport edge current we have to be able to split
either the current or the magnetization!
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either the current or the magnetization!

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 14 / 20



Heuristic physical picture

Splitting the edge current density

jE(x) = jEmag(x) + jEtr(x)

mµ,T (b) ≈ 1

|ΛL|
Tr
(

(∂bHΛ(b))F ′µ,T (HΛ(b))
)

= − 1

|ΛL|

∫
Λ

dx x2

(
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Bulk-edge correspondence T ≥ 0: Landau case
Setting:
Bulk Hamiltonian Hb = 1

2 (−i∇− bA)2

Spectrum given by infinitely degenerate eigenvalue
{
En,b = b(n+ 1

2 ) |n ∈ N
}

.
Πn,b spectral projection onto En,b.
Integrated density of states associated to each Landau level:

lim
L→∞

Tr(χΛLΠn,b)

L2
= Tr(χΩΠn,b) =

b

2π
.

Hall conductivity for T ≥ 0 (Evaluation of Kubo formula,
Cornean-Nenciu-Pedersen 2006, physics paper...):

σH(µ, T, b) = −nµ,T (b)

b
.

→ The pressure is simply given by

pµ,T (b) = −
∞∑
n=0

Fµ,T (En,b) Tr(χΩΠn,b) = −
∞∑
n=0

Fµ,T (En,b)
b

2π

⇒ mµ,T (b) := −∂bpµ,T (b) =

∞∑
n=1

F ′µ,T (En,b)
dEn,b
db

b

2π
− pµ,T (b)

b

=: mcirc
µ,T (b) +mres

µ,T (b)

⇒ (∂bnµ,T (b) =)∂µmµ,T (b) =

∞∑
n=1

F ′′µ,T (En,b)
dEn,b
db

b

2π
+ σH(µ, T, b)

→ Extra term→ the weighted sum of the angular momentum of each states in
the Landau levels!
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Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.
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2π is the number of states per unit area.

• F ′µ,T (En,b) is the statistical weight.

• What about d
dbEn,b = n?

→ "Hellmann-Feynman theorem", {ψn,m}m∈Z o.n.b. for RanΠn,b

〈ψn,m,
1

2
x× pψn,m〉 = 〈ψn,m, Lψn,m〉 = n.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.

• b
2π is the number of states per unit area.

• F ′µ,T (En,b) is the statistical weight.

• What about d
dbEn,b = n?

→ "Hellmann-Feynman theorem", {ψn,m}m∈Z o.n.b. for RanΠn,b

〈ψn,m,
1

2
x× pψn,m〉 = 〈ψn,m, Lψn,m〉 = n.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.

• b
2π is the number of states per unit area.

• F ′µ,T (En,b) is the statistical weight.

• What about d
dbEn,b = n?

→ "Hellmann-Feynman theorem", {ψn,m}m∈Z o.n.b. for RanΠn,b

〈ψn,m,
1

2
x× pψn,m〉 = 〈ψn,m, Lψn,m〉 = n.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.

• b
2π is the number of states per unit area.

• F ′µ,T (En,b) is the statistical weight.

• What about d
dbEn,b = n?

→ "Hellmann-Feynman theorem", {ψn,m}m∈Z o.n.b. for RanΠn,b

〈ψn,m,
1

2
x× pψn,m〉 = 〈ψn,m, Lψn,m〉 = n.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Bulk-edge correspondence T ≥ 0: Landau case

mcirc
µ,T (b) :=

∞∑
n=1

F ′µ,T (En,b)
d

db
En,b

b

2π

is magnetic moment per unit area.

⇒ mcirc
µ,T (b) is the part of the magnetization given by the local circulation

⇒ we have to subtract the associated edge current contribution:

mcirc
µ,T (b) = Imag(µ, T, b)

Our formula (?)

⇒ mµ,T (b) = IE(µ, T, b)

mres
µ,T (b) = mµ,T (b)−mcirc

µ,T (b) = IE(µ, T, b)− IEmag(µ, T, b) = IEtr(µ, T, b)

Bulk-edge correspondence at T ≥ 0 [Cornean, M.M., Teufel]

σH(µ, T, b) = −nµ,T,b
b

= ∂µm
res
µ,T (b) = ∂µI

E
tr(µ, T, b) = σE(µ, T, b)

Massimo Moscolari (Tübingen) General bulk-edge correspondence at T ≥ 0 16 / 20



Isolated simple Bloch bands

What about the splitting of the magnetization in (more) general situations?

Theorem [Schulz–Baldes-Teufel 12 ; Teufel-Stiepan 13]
In tight-binding model, with M simple isolated Bloch bands we have:

mµ,T (b) =

M∑
l=1

∫
Bb

dk

(2π)d

(
F ′µ,T (El(k))R

(l)
j+1,j+2(k) + Fµ,T (El(k))Ω

(l)
1,2(k)

)
=: mcirc

µ,T (b) +mres
µ,T (b)

Conjecture [See Bellissard-vanElst-Schulz–Baldes;Niu et al.;Resta et al.,]

σH(µ, T, b) = ∂µm
res
µ,T (b)

⇒ the conjecture coupled with our formula (?) would imply bulk-edge
correspondence at T ≥ 0.
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ı

2
(Tr (Pl(k)∂1Pl(k) (H(k)− El(k)) ∂2Pl(k))− (1↔ 2))
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Sketch of the proof

Theorem [H. Cornean, M.M., S.Teufel]

First, pµ,T (·) and P (L,ω)
µ,T (·) are everywhere differentiable and, for a.e. ω ∈ Θ:

p
(E)
µ,T (b) = lim

L→∞
P

(L,ω)
µ,T (b) = pµ,T (b), lim

L→∞

dP
(L,ω)
µ,T

db
(b) =

dpµ,T
db

(b).

Moreover, let g ∈ C1([0, 1]) be any function such that g(0) = 1 and g(1) = 0.
Define χ̃L(x) := χL(x)g(x2/L). Then independently of g we have:

dpµ,T
db

(b) = lim
L→∞

E
(
Tr
{
χ̃Li

[
HE

•,b, X1

]
F ′µ,T (HE

•,b)
})
. (?)
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Mathematical framework - The bulk-edge model

L

Ω

S∞

SL

E
Ω := [0, 1]2

is the unit cell of the bulk Hamiltonian
and χΩ is characteristic function of Ω.

SL := [0, 1]× [0, L]

χL characteristic function of SL.

S∞ := [0, 1]× [0,∞]

χ∞ characteristic function of S∞.
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Sketch of the proof
Step 0.: Trace class properties, regularities of integral kernels and vanishing
of equilibrium "current", that is

E
(
Tr
(
χΩi[H•,b, Xi]F

′(H•,b)
))

= 0, i ∈ {1, 2}.

Step 1. Edge pressure coincides in the limit with the bulk pressure :

lim
L→∞

P
(L,ω)
µ,T (b) = lim

L→∞

1

L
Tr
(
χLF (HE

ω,b)
)

= pµ,T (b) .

→ Main tool: geometric perturbation theory:

L ≥ 1; Strip near the edge: ΞL(t) :=
{
x ∈ E |dist(x, ∂E) ≤ t

√
L
}

, t > 0.
0 ≤ η0, ηL ≤ 1, smooth functions and only depending on x2 such that
η0(x) + ηL(x) = 1 for every x ∈ E
Take 0 ≤ η̃0, η̃L ≤ 1 again only depending on x2, such that they are a sort of
stretched version of η0 and ηL (no partition of unity in this case).

UL,ω(z) := η̃L (Hω,b − z)−1
ηL + η̃0

(
HE
ω,b − z

)−1
η0.

WL,ω(z) := (−2i∇η̃L · (−i∇−A− bA)− (∆η̃L)) (Hω,b − z)−1
ηL

(−2i∇η̃0 · (−i∇−A− bA)− (∆η̃0))
(
HE
ω,b − z

)−1
η0.

The resolvent of the edge Hamiltonian obeys the identity:(
HE
ω,b − z

)−1
= UL,ω(z)−

(
HE
ω,b − z

)−1
WL,ω(z).
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Sketch of the proof
Step 0.: Trace class properties, regularities of integral kernels and vanishing
of equilibrium "current", that is

E
(
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(
χΩi[H•,b, Xi]F

′(H•,b)
))
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∂jF

∂z1
j
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coincides in the limit with the bulk pressure :

lim
L→∞

P
(L,ω)
µ,T (b) = lim

L→∞
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Sketch of the proof

Step 2. The magnetic derivative of the edge pressure has a thermodynamic
limit:

lim
L→∞

dP
(L,ω)
µ,T (b)

db
(b) = lim

L→∞
E

(
dP

(L,ω)
µ,T (b)

db
(b)

)
=

dpµ,T (b)

db
for a.e. ω ∈ Θ.

→ Magnetic derivative and thermodynamic limit commute!

Step 3.The limit of the magnetic derivative of the edge pressure is an edge
current :

lim
L→∞

−E

(∫ 1

0

dx1

∫ L

0

dx2 g
(x2

L

) {
i[HE

•,b, X1]F ′(HE
•,b)
}

(x1, x2;x1, x2)

)

→ Exploit Step 2.

→ Previous trace class estimates + vanishing of the equilibrium current allows
to prove that the limit is independent from g.
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→ New mathematical tool: We extended gauge covariant magnetic
perturbation theory (Cornean-Nenciu ’00) to operators defined on
domains with boundary.
Modified asymmetric phase ϕ(x,y) := (y1 − x1)y2(

Px1 − εA1(x)
)
eiεϕ(x,y) = eiεϕ(x,y)

(
Px1 − εA1(x− y)

)
.

→ SEω,ε,z(x;y) := eiεϕ(x,y)
(
HE
ω,b − z

)−1

(x;y) is an "almost inverse" for the
magnetically perturbed edge operator

(
HE
ω,b+ε − z

)
:(

HE
ω,b+ε − z

)
SEω,ε,z = 1 + TEω,ε,z

⇒ Explicit resolvent expansion in ε as ε→ 0.
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Summary & open questions

Recap:
• Bulk-edge correspondence in the form m = IE at every temperature.
• Usual bulk-edge correspondence for µ in a gap and limit↘ T = 0.
• Bulk-edge correspondence for the Landau Hamiltonian at T ≥ 0.

Open questions:
• General splitting of the magnetization and bulk-edge correspondence.
• What about higher order derivatives? Is there a bulk-edge

correspondence for the bulk magnetic susceptibility ?
• Limit to zero temperature in the mobility gap case (see

Elgart-Graf-Schenker ’05)? Limit to zero temperature in the metallic
case?

• Extension to Dirac operators (Work in progress with H. Cornean and K.
Sørensen).

• Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.
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Summary & open questions

Open questions:
• General splitting of the magnetization and bulk-edge correspondence.
• What about higher order derivatives? Is there a bulk-edge correspondence for the bulk

magnetic susceptibility ?
• Limit to zero temperature in the mobility gap case? Limit to zero temperature in the metallic

case?
• Extension to Dirac operators.
• Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

Thank you for your attention!
Cornean H.D., M. M., Teufel, S.: General bulk-edge correspondence at positive temperature.
ArXiv: 2107.13456 (2021).

M.M, B. B. Støttrup: Regularity properties of bulk and edge current densities at positive
temperature . ArXiv: 2201.08803 (2022).
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Quantization of edge conductance at zero temperature

Let Vω = 0→ The Hamiltonian Hb0 commutes with magnetic translation
(rationality condition on the magnetic field).

→ the operator i
[
HE
b0
, X1

]
F ′(HE

b0
) is Z-periodic in the x1-direction up to a

Bloch-Floquet-Zak transform it is unitarily equivalent to
∫ ⊕

[−π,π]
dk1 h

E(k1),
where the fiber operator

hE(k1) =
1

2
(−i∂x1−A1(x1, x2)+b0x2+k1)2+

1

2
(−i∂x2−A2(x1, x2))2+V (x1, x2)

is densely defined in L2(S∞) with periodic boundary conditions on the lateral
lines x1 ∈ {0, 1} restricted to E, and with a Dirichlet boundary condition at the
bottom x2 = 0.

The bulk operator Hb0 can be written in similar manner, but its fiber h(k1) will
be defined in L2([0, 1]× R) with periodic boundary conditions on the infinite
lines x1 ∈ {0, 1}.
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Quantization of edge conductance at zero temperature

• h(k1) does not have spectrum inside the gap [e−, e+].
• (hE(k1)− z)−1 −χ∞(h(k1)− z)−1χ∞ is compact for any z with Im(z) 6= 0,

thus the spectral projection of hE(k1) inside [e−, e+] is compact, hence
hE(k1) can only have finitely many discrete eigenvalues which can be
inside [e−, e+].
• These eigenvalues are the so-called edge states, corresponding to

eigenfunctions exponentially localized near the boundary x2 = 0.
According to Rellich’s theorem, each edge state eigenvalue λ(k1) can be
analytically followed as a function of k1 as long as its value belongs to
[e−, e+].
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Quantization of edge conductance at zero temperature

Lemma
Let N <∞ be the total number of edge state eigenvalues which can enter the
interval [e−, e+]. Without loss of generality we may assume that no such
eigenvalue starts or ends at e±, i.e. λn(±π) 6∈ {e−, e+}. Then:

− 2πTr
{
χ∞i

[
HE , X1

]
F ′0(HE)

}
=

N∑
n=1

∫ π

−π
dk1 F

′
0(λn(k1))λ′n(k1)

=

N∑
n=1

{F0(λn(−π))− F0(λn(π))},

and the right-hand side is an integer.
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