General bulk-edge correspondence at positive temperature

Massimo Moscolari Eberhard Karls Universität Tübingen

Joint works with H. Cornean, B. Støttrup (Aalborg University) and S. Teufel (Tübingen)

Arxiv: 2107.13456 and 2201.08803

Quantum Hall Effect and Topological Phases @ Strasbourg June 22, 2022

Physically: Integer Quantum Hall Effect.

Linear response theory in the infinite volume limit gives $\sigma_H \in \mathbb{Z}$.

Analysis of "edge modes/currents" at the boundary of the sample gives $\sigma_E \in \mathbb{Z}$

At zero temperature, with (mobility) gap $\sigma_H = \sigma_E \in \mathbb{Z}$

 $\sigma_H = \sigma_E \in \mathbb{Z}$

Mathematically:

Bulk system defined on $L^2(\mathbb{R}^2)$.

Edge system defined by cutting the bulk one and imposing Dirichlet boundary conditions.

Is there any mathematical relation/correspondence between the two systems?

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

Our goal: Prove bulk-edge correspondence (for transport coefficients) at any temperature.

⇒ Longer route than expected!

Physically: Integer Quantum Hall Effect.

Linear response theory in the infinite volume limit gives $\sigma_H \in \mathbb{Z}$.

Analysis of "edge modes/currents" at the boundary of the sample gives $\sigma_E \in \mathbb{Z}$

At zero temperature, with (mobility) gap $\sigma_H = \sigma_E \in \mathbb{Z}$

Mathematically:

Bulk system defined on $L^2(\mathbb{R}^2)$.

Edge system defined by cutting the bulk one and imposing Dirichlet boundary conditions.

Is there any mathematical relation/correspondence between the two systems?

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Physically: Integer Quantum Hall Effect.

Linear response theory in the infinite volume limit gives $\sigma_H \in \mathbb{Z}$.

Analysis of "edge modes/currents" at the boundary of the sample gives $\sigma_E \in \mathbb{Z}$

At zero temperature, with (mobility) gap

 $\sigma_H = \sigma_E \in \mathbb{Z}$

Mathematically:

Bulk system defined on $L^2(\mathbb{R}^2)$.

Edge system defined by cutting the bulk one and imposing Dirichlet boundary conditions.

Is there any mathematical relation/correspondence between the two systems?

Vast mathematical physics literature (2000-Today): Kellendonk, Schulz-Baldes, Richter; Graf & collaborators(Elgart, Schenker, Porta, Tauber, Shapiro); Prodan; Drouot; and many more...

Our goal: Prove bulk-edge correspondence (for transport coefficients) at any temperature.

Longer route than expected

Physically: Integer Quantum Hall Effect.

Linear response theory in the infinite volume limit gives $\sigma_H \in \mathbb{Z}$.

Analysis of "edge modes/currents" at the boundary of the sample gives $\sigma_E \in \mathbb{Z}$

At zero temperature, with (mobility) gap

 $\sigma_H = \sigma_E \in \mathbb{Z}$

Mathematically:

Bulk system defined on $L^2(\mathbb{R}^2)$.

Edge system defined by cutting the bulk one and imposing Dirichlet boundary conditions.

Is there any mathematical relation/correspondence between the two systems?

Vast mathematical physics literature (2000-Today): Kellendonk, Schulz-Baldes, Richter; Graf & collaborators(Elgart, Schenker, Porta, Tauber, Shapiro); Prodan; Drouot; and many more...

All the results are for zero-temperature.

Our goal: Prove bulk-edge correspondence (for transport coefficients) at any temperature.

Physically: Integer Quantum Hall Effect.

Linear response theory in the infinite volume limit gives $\sigma_H \in \mathbb{Z}$.

Analysis of "edge modes/currents" at the boundary of the sample gives $\sigma_E \in \mathbb{Z}$

At zero temperature, with (mobility) gap

 $\sigma_H = \sigma_E \in \mathbb{Z}$

Mathematically:

Bulk system defined on $L^2(\mathbb{R}^2)$.

Edge system defined by cutting the bulk one and imposing Dirichlet boundary conditions.

Is there any mathematical relation/correspondence between the two systems?

All the results are for zero-temperature.

Our goal: Prove bulk-edge correspondence (for transport coefficients) at any temperature.

\Rightarrow Longer route than expected!

Physically: Integer Quantum Hall Effect.

Linear response theory in the infinite volume limit gives $\sigma_H \in \mathbb{Z}$.

Analysis of "edge modes/currents" at the boundary of the sample gives $\sigma_E \in \mathbb{Z}$

At zero temperature, with (mobility) gap $\sigma_H = \sigma_E \in \mathbb{Z}$

Mathematically:

Bulk system defined on $L^2(\mathbb{R}^2)$.

Edge system defined by cutting the bulk one and imposing Dirichlet boundary conditions.

Is there any mathematical relation/correspondence between the two systems?

Our goal: Prove bulk-edge correspondence (for transport coefficients) at any temperature.

```
\Rightarrow Longer route than expected!
```

$$H_{\omega,b} = \frac{1}{2} \left(-i\nabla - \mathcal{A} - bA \right)^2 + V + V_{\omega}$$

Let $\tau_{b,\gamma}$ be a family of magnetic translations compatible with the Landau gauge, and $T(\gamma)$ the canonical action of \mathbb{Z}^2 on Θ $(T(\gamma)\omega = \{\omega_{\eta-\gamma}\}_{\eta \in \mathbb{Z}^2})$

$$\Rightarrow \quad \tau_{b,\gamma} H_{\omega,b} \tau_{b,-\gamma} = H_{T(\gamma)\omega,b}, \quad \forall \, \gamma \in \mathbb{Z}^2 \,.$$

 $\Rightarrow (H_{\omega,b})_{\omega\in\Theta}$ is ergodic with respect to the lattice \mathbb{Z}^2

 \rightarrow No assumption on the spectrum of the model!

Mathematical framework - The bulk-edge model

The bulk dynamics is described by a magnetic random Schroedinger operator on $L^2(\mathbb{R}^2)$:

$$H_{\omega,b} = \frac{1}{2} \left(-i\nabla - \mathcal{A} - bA \right)^2 + V + V_{\omega}$$

 Scalar potential V and magnetic potential A are smooth and Z² periodic, namely

$$V(\mathbf{x} + \gamma) = V(\mathbf{x}), \quad \mathcal{A}(\mathbf{x} + \gamma) = \mathcal{A}(\mathbf{x}) \qquad \gamma \in \mathbb{Z}^2.$$

• $\mathbb{R} \ni b := -e\mathfrak{B}$ and \mathbf{A} is the magnetic potential in the Landau gauge

$$A = \left(-x_2, 0\right).$$

• The disordered background is modelled by the usual Anderson potential given by independent identically distributed random variables:

$$\{\omega_{\gamma}\}_{\gamma\in\mathbb{Z}^{2}} = \omega \in \Theta = [-1,1]^{\mathbb{Z}^{2}}, \quad \mathbb{P} = \bigotimes_{\mathbb{Z}^{2}} \mu$$
$$V_{\omega}(x) = \sum_{\gamma\in\mathbb{Z}^{2}} \omega_{\gamma} u(x-\gamma) \quad u \in C_{0}^{\infty}(\mathbb{R}^{2})$$

Let $au_{b,\gamma}$ be a family of magnetic translations compatible with the Landau _

$$H_{\omega,b} = \frac{1}{2} \left(-i\nabla - \mathcal{A} - bA \right)^2 + V + V_{\omega}$$

Let $\tau_{b,\gamma}$ be a family of magnetic translations compatible with the Landau gauge, and $T(\gamma)$ the canonical action of \mathbb{Z}^2 on Θ $(T(\gamma)\omega = \{\omega_{\eta-\gamma}\}_{\eta\in\mathbb{Z}^2})$

$$\Rightarrow \quad \tau_{b,\gamma} H_{\omega,b} \tau_{b,-\gamma} = H_{T(\gamma)\omega,b}, \quad \forall \, \gamma \in \mathbb{Z}^2 \,.$$

 $\Rightarrow (H_{\omega,b})_{\omega \in \Theta}$ is ergodic with respect to the lattice \mathbb{Z}^2

ightarrow No assumption on the spectrum of the model!

$$H_{\omega,b} = \frac{1}{2} \left(-i\nabla - \mathcal{A} - bA \right)^2 + V + V_{\omega}$$

Let $\tau_{b,\gamma}$ be a family of magnetic translations compatible with the Landau gauge, and $T(\gamma)$ the canonical action of \mathbb{Z}^2 on Θ $(T(\gamma)\omega = \{\omega_{\eta-\gamma}\}_{\eta\in\mathbb{Z}^2})$

$$\Rightarrow \quad \tau_{b,\gamma} H_{\omega,b} \tau_{b,-\gamma} = H_{T(\gamma)\omega,b}, \quad \forall \, \gamma \in \mathbb{Z}^2 \,.$$

 $\Rightarrow (H_{\omega,b})_{\omega \in \Theta}$ is ergodic with respect to the lattice \mathbb{Z}^2

ightarrow No assumption on the spectrum of the model!

$$H_{\omega,b} = \frac{1}{2} \left(-i\nabla - \mathcal{A} - bA \right)^2 + V + V_{\omega}$$

Let $\tau_{b,\gamma}$ be a family of magnetic translations compatible with the Landau gauge, and $T(\gamma)$ the canonical action of \mathbb{Z}^2 on Θ $(T(\gamma)\omega = \{\omega_{\eta-\gamma}\}_{\eta\in\mathbb{Z}^2})$

$$\Rightarrow \quad \tau_{b,\gamma} H_{\omega,b} \tau_{b,-\gamma} = H_{T(\gamma)\omega,b}, \quad \forall \, \gamma \in \mathbb{Z}^2 \,.$$

 $\Rightarrow (H_{\omega,b})_{\omega \in \Theta}$ is ergodic with respect to the lattice \mathbb{Z}^2

 \rightarrow No assumption on the spectrum of the model!

Consider the half-plane

$$E := \{ (x_1, x_2) \in \mathbb{R}^2 | x_2 \ge 0 \}.$$

The edge dynamics is described by the Hamiltonian $H^E_{\omega,b}$ living in $L^2(E) \rightarrow H^E_{\omega,b}$ is the natural choice given by the Dirichlet realization of $H_{\omega,b}$ in $E \rightarrow$ we cut the bulk system.

 $(H^E_{\omega,b})_{\omega\in\Theta}$ is still ergodic with respect to the one-dimensional lattice generated by the vector (1,0):

$$au_{b,\gamma}H^E_{\omega,b} au_{b,-\gamma} = H^E_{T(\gamma)\omega,b} \qquad \forall \gamma = (\gamma_1,0) \in \mathbb{Z}^2.$$

Consider the half-plane

$$E := \{ (x_1, x_2) \in \mathbb{R}^2 | x_2 \ge 0 \}.$$

The edge dynamics is described by the Hamiltonian $H^E_{\omega,b}$ living in $L^2(E) \rightarrow H^E_{\omega,b}$ is the natural choice given by the Dirichlet realization of $H_{\omega,b}$ in $E \rightarrow$ we cut the bulk system.

 $(H^E_{\omega,b})_{\omega\in\Theta}$ is still ergodic with respect to the one-dimensional lattice generated by the vector (1,0):

$$au_{b,\gamma}H^E_{\omega,b} au_{b,-\gamma} = H^E_{T(\gamma)\omega,b} \qquad \forall \, \gamma = (\gamma_1,0) \in \mathbb{Z}^2 \,.$$

Consider the half-plane

$$E := \{ (x_1, x_2) \in \mathbb{R}^2 | x_2 \ge 0 \}.$$

The edge dynamics is described by the Hamiltonian $H^E_{\omega,b}$ living in $L^2(E) \rightarrow H^E_{\omega,b}$ is the natural choice given by the Dirichlet realization of $H_{\omega,b}$ in $E \rightarrow$ we cut the bulk system.

 $(H^E_{\omega,b})_{\omega\in\Theta}$ is still ergodic with respect to the one-dimensional lattice generated by the vector (1,0):

$$\tau_{b,\gamma} H^E_{\omega,b} \tau_{b,-\gamma} = H^E_{T(\gamma)\omega,b} \qquad \forall \gamma = (\gamma_1, 0) \in \mathbb{Z}^2.$$

Mathematical framework - The edge model

$$\Omega := [0, 1]^2$$

is the unit cell of the bulk Hamiltonian and χ_{Ω} is characteristic function of Ω .

$$\mathcal{S}_L := [0,1] \times [0,L]$$

 χ_L characteristic function of \mathcal{S}_L .

$$\mathcal{S}_\infty:=[0,1]\times[0,\infty]$$

 χ_{∞} characteristic function of \mathcal{S}_{∞} .

(Edge) Thermodynamic pressure

Let $F_{\mu,T}(x) = -T \ln \left(1 + e^{-(x-\mu)/T}\right)$ be the grandcanonical potential. Remember that $F'_{\mu,T}(x) = \frac{1}{e^{(x-\mu)/T}+1}$ is the Fermi-Dirac distribution

Bulk pressure

The bulk pressure is defined as the thermodynamic limit of the density of grandcanonical potential

$$p_{\mu,T}(b) := -\mathbb{E}\left(\mathrm{Tr}\big(\chi_{\Omega}F_{\mu,T}(H_{\bullet,b})\big)\right) = -\lim_{L\to\infty}\frac{1}{L^2}\,\mathrm{Tr}(\chi_{\Lambda_L}F_{\mu,T}(H_{\omega,b})) \quad \text{for a.e. } \omega.$$

What about the edge?

Edge pressure

$$p_{\mu,T}^{(E)}(b) := -\lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) := -\lim_{L \to \infty} \frac{1}{L} \operatorname{Tr} \left(\chi_L F_{\mu,T}(H_{\omega,b}^E) \right) \quad \text{for a.e. } \omega.$$

ightarrow These are the only two ingredients that we need!

Theorem [H. Cornean, M.M., S.Teufel]

First, $p_{\mu,T}(\cdot)$ and $P_{\mu,T}^{(L,\omega)}(\cdot)$ are everywhere differentiable and, for a.e. $\omega \in \Theta$:

$$p_{\mu,T}^{(E)}(b) = \lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = p_{\mu,T}(b), \quad \lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}}{\mathrm{d}b}(b) = \frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b).$$

Moreover, let $g \in C^1([0,1])$ be any function such that g(0) = 1 and g(1) = 0. Define $\tilde{\chi}_L(\mathbf{x}) := \chi_L(\mathbf{x})g(x_2/L)$. Then independently of g we have:

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\mathrm{Tr}\left\{ \widetilde{\chi}_L \mathrm{i}\left[H^E_{\boldsymbol{\cdot},b}, X_1 \right] F'_{\mu,T}(H^E_{\boldsymbol{\cdot},b}) \right\} \right). \tag{*}$$

(T, ...)

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A

- (*) holds true at every temperature.
- (*) holds independently of the spectrum of $H_{\omega,b}$.
- Purely analytic proof.
- Stability w.r.t. boundary perturbations.

Theorem [H. Cornean, M.M., S.Teufel]

First, $p_{\mu,T}(\cdot)$ and $P_{\mu,T}^{(L,\omega)}(\cdot)$ are everywhere differentiable and, for a.e. $\omega \in \Theta$:

$$p_{\mu,T}^{(E)}(b) = \lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = p_{\mu,T}(b), \quad \lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}}{\mathrm{d}b}(b) = \frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b).$$

Moreover, let $g \in C^1([0,1])$ be any function such that g(0) = 1 and g(1) = 0. Define $\tilde{\chi}_L(\mathbf{x}) := \chi_L(\mathbf{x})g(x_2/L)$. Then independently of g we have:

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E} \left(\mathrm{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right). \tag{*}$$

 (I,ω)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• (*) holds true at every temperature.

- (*) holds independently of the spectrum of $H_{\omega,b}$.
- Purely analytic proof.
- Stability w.r.t. boundary perturbations.

Theorem [H. Cornean, M.M., S.Teufel]

First, $p_{\mu,T}(\cdot)$ and $P_{\mu,T}^{(L,\omega)}(\cdot)$ are everywhere differentiable and, for a.e. $\omega \in \Theta$:

$$p_{\mu,T}^{(E)}(b) = \lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = p_{\mu,T}(b), \quad \lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}}{\mathrm{d}b}(b) = \frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b).$$

Moreover, let $g \in C^1([0,1])$ be any function such that g(0) = 1 and g(1) = 0. Define $\tilde{\chi}_L(\mathbf{x}) := \chi_L(\mathbf{x})g(x_2/L)$. Then independently of g we have:

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E} \left(\mathrm{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right). \tag{*}$$

 $(I \omega)$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- (*) holds true at every temperature.
- (*) holds independently of the spectrum of $H_{\omega,b}$.
- Purely analytic proof.
- Stability w.r.t. boundary perturbations.

Theorem [H. Cornean, M.M., S.Teufel]

First, $p_{\mu,T}(\cdot)$ and $P_{\mu,T}^{(L,\omega)}(\cdot)$ are everywhere differentiable and, for a.e. $\omega \in \Theta$:

$$p_{\mu,T}^{(E)}(b) = \lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = p_{\mu,T}(b), \quad \lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}}{\mathrm{d}b}(b) = \frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b).$$

Moreover, let $g \in C^1([0,1])$ be any function such that g(0) = 1 and g(1) = 0. Define $\tilde{\chi}_L(\mathbf{x}) := \chi_L(\mathbf{x})g(x_2/L)$. Then independently of g we have:

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E} \left(\mathrm{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right). \tag{*}$$

 (I,ω)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- (*) holds true at every temperature.
- (*) holds independently of the spectrum of $H_{\omega,b}$.
- Purely analytic proof.
- Stability w.r.t. boundary perturbations.

Theorem [H. Cornean, M.M., S.Teufel]

First, $p_{\mu,T}(\cdot)$ and $P_{\mu,T}^{(L,\omega)}(\cdot)$ are everywhere differentiable and, for a.e. $\omega \in \Theta$:

$$p_{\mu,T}^{(E)}(b) = \lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = p_{\mu,T}(b), \quad \lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}}{\mathrm{d}b}(b) = \frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b).$$

Moreover, let $g \in C^1([0,1])$ be any function such that g(0) = 1 and g(1) = 0. Define $\tilde{\chi}_L(\mathbf{x}) := \chi_L(\mathbf{x})g(x_2/L)$. Then independently of g we have:

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E} \left(\mathrm{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right). \tag{*}$$

 $(I \omega)$

- (*) holds true at every temperature.
- (*) holds independently of the spectrum of $H_{\omega,b}$.
- Purely analytic proof.
- Stability w.r.t. boundary perturbations.

The main result

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E} \left(\mathrm{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\star,b}, X_1 \right] F'_{\mu,T}(H^E_{\star,b}) \right\} \right). \tag{*}$$

still hold true in the case where the edge Hamiltonian is perturbed by a smooth potential W_{ω} supported in a finite strip near the edge.

Scalar potential W_{ω} , s.t. $\operatorname{supp}(W_{\omega}) \subseteq \mathbb{R} \times [0, d], d > 0$. $H^{E,W}_{\omega,b} = H^{E}_{\omega,b} + W_{\omega}$, densely defined on $L^{2}(E)$ with Dirichlet boundary condition at $x_{2} = 0$. <u>Assume</u> that $(H^{E,W}_{\omega,b})_{\omega \in \Theta}$ is still ergodic on the one-dimensional lattice generated by (1, 0).

 $\lim_{L \to \infty} \mathbb{E}(\operatorname{Tr}(\widetilde{\chi}_L \mathrm{i}\left[H^{E,W}_{\star,b}, X_1\right] F'(H^{E,W}_{\star,b}))) = \lim_{L \to \infty} \mathbb{E}\left(\operatorname{Tr}\left(\widetilde{\chi}_L \mathrm{i}\left[H^{E}_{\star,b}, X_1\right] F'(H^{E}_{\star,b})\right)\right)$

 \Rightarrow Stability w.r.t. boundary perturbations!

(日)

The main result

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\mathrm{Tr}\left\{ \tilde{\chi}_L \mathrm{i}\left[H^E_{\boldsymbol{\cdot},b}, X_1 \right] F'_{\mu,T}(H^E_{\boldsymbol{\cdot},b}) \right\} \right). \tag{*}$$

still hold true in the case where the edge Hamiltonian is perturbed by a smooth potential W_{ω} supported in a finite strip near the edge.

Scalar potential W_{ω} , s.t. $\operatorname{supp}(W_{\omega}) \subseteq \mathbb{R} \times [0, d], d > 0$. $H_{\omega,b}^{E,W} = H_{\omega,b}^E + W_{\omega}$, densely defined on $L^2(E)$ with Dirichlet boundary condition at $x_2 = 0$. <u>Assume</u> that $(H_{\omega,b}^{E,W})_{\omega \in \Theta}$ is still ergodic on the one-dimensional lattice generated by (1, 0).

 $\lim_{L \to \infty} \mathbb{E}(\operatorname{Tr}(\widetilde{\chi}_L \mathrm{i}\left[H^{E,W}_{\boldsymbol{\cdot},b}, X_1\right] F'(H^{E,W}_{\boldsymbol{\cdot},b}))) = \lim_{L \to \infty} \mathbb{E}\left(\operatorname{Tr}\left(\widetilde{\chi}_L \mathrm{i}\left[H^{E}_{\boldsymbol{\cdot},b}, X_1\right] F'(H^{E}_{\boldsymbol{\cdot},b})\right)\right)$

 \Rightarrow Stability w.r.t. boundary perturbations!

(ロ) (部) (E) (E) (E)

The main result

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\mathrm{Tr}\left\{ \tilde{\chi}_L \mathrm{i}\left[H^E_{\boldsymbol{\cdot},b}, X_1 \right] F'_{\mu,T}(H^E_{\boldsymbol{\cdot},b}) \right\} \right). \tag{*}$$

still hold true in the case where the edge Hamiltonian is perturbed by a smooth potential W_{ω} supported in a finite strip near the edge.

Scalar potential W_{ω} , s.t. $\operatorname{supp}(W_{\omega}) \subseteq \mathbb{R} \times [0, d], d > 0$. $H_{\omega,b}^{E,W} = H_{\omega,b}^E + W_{\omega}$, densely defined on $L^2(E)$ with Dirichlet boundary condition at $x_2 = 0$. <u>Assume</u> that $(H_{\omega,b}^{E,W})_{\omega \in \Theta}$ is still ergodic on the one-dimensional lattice generated by (1, 0).

$\lim_{L \to \infty} \mathbb{E}(\operatorname{Tr}(\widetilde{\chi}_L \mathbf{i} \left[H^{E,W}_{{\boldsymbol{\star}},b}, X_1 \right] F'(H^{E,W}_{{\boldsymbol{\star}},b}))) = \lim_{L \to \infty} \mathbb{E}\left(\operatorname{Tr}\left(\widetilde{\chi}_L \mathbf{i} \left[H^{E}_{{\boldsymbol{\star}},b}, X_1 \right] F'(H^{E}_{{\boldsymbol{\star}},b}) \right)\right)$

 \Rightarrow Stability w.r.t. boundary perturbations!

<ロ> <同> <同> < 同> < 同> < 三> < 三>

The main result

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\mathrm{Tr}\left\{\tilde{\chi}_L \mathrm{i}\left[H^E_{\boldsymbol{\cdot},b}, X_1\right] F'_{\mu,T}(H^E_{\boldsymbol{\cdot},b})\right\}\right). \tag{*}$$

still hold true in the case where the edge Hamiltonian is perturbed by a smooth potential W_{ω} supported in a finite strip near the edge.

Scalar potential W_{ω} , s.t. $\operatorname{supp}(W_{\omega}) \subseteq \mathbb{R} \times [0, d], d > 0$. $H_{\omega,b}^{E,W} = H_{\omega,b}^E + W_{\omega}$, densely defined on $L^2(E)$ with Dirichlet boundary condition at $x_2 = 0$. <u>Assume</u> that $(H_{\omega,b}^{E,W})_{\omega \in \Theta}$ is still ergodic on the one-dimensional lattice generated by (1, 0).

 $\lim_{L \to \infty} \mathbb{E}(\operatorname{Tr}(\widetilde{\chi}_L \mathrm{i}\left[H^{E,W}_{{\boldsymbol{\cdot}},b}, X_1\right] F'(H^{E,W}_{{\boldsymbol{\cdot}},b}))) = \lim_{L \to \infty} \mathbb{E}\left(\operatorname{Tr}\left(\widetilde{\chi}_L \mathrm{i}\left[H^{E}_{{\boldsymbol{\cdot}},b}, X_1\right] F'(H^{E}_{{\boldsymbol{\cdot}},b})\right)\right)$

 \Rightarrow Stability w.r.t. boundary perturbations!

(ロ) (部) (E) (E) (E)

The main result

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\mathrm{Tr}\left\{\tilde{\chi}_L \mathrm{i}\left[H^E_{\boldsymbol{\star},b}, X_1\right] F'_{\mu,T}(H^E_{\boldsymbol{\star},b})\right\}\right). \tag{\star}$$

still hold true in the case where the edge Hamiltonian is perturbed by a smooth potential W_{ω} supported in a finite strip near the edge.

Scalar potential W_{ω} , s.t. $\operatorname{supp}(W_{\omega}) \subseteq \mathbb{R} \times [0, d], d > 0$. $H_{\omega,b}^{E,W} = H_{\omega,b}^E + W_{\omega}$, densely defined on $L^2(E)$ with Dirichlet boundary condition at $x_2 = 0$. <u>Assume</u> that $(H_{\omega,b}^{E,W})_{\omega \in \Theta}$ is still ergodic on the one-dimensional lattice generated by (1, 0).

$$\lim_{L \to \infty} \mathbb{E}(\operatorname{Tr}(\widetilde{\chi}_L \mathrm{i}\left[H^{E,W}_{\boldsymbol{\cdot},b}, X_1\right] F'(H^{E,W}_{\boldsymbol{\cdot},b}))) = \lim_{L \to \infty} \mathbb{E}\left(\operatorname{Tr}\left(\widetilde{\chi}_L \mathrm{i}\left[H^{E}_{\boldsymbol{\cdot},b}, X_1\right] F'(H^{E}_{\boldsymbol{\cdot},b})\right)\right)$$

 \Rightarrow Stability w.r.t. boundary perturbations!

イロト イヨト イヨト イヨト

Left-hand side (the bulk):

$$-e\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = m_{\mu,T}(b)$$

is just the definition of the bulk magnetization.

What about the right-hand side (the edge)?

$$\lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\star, b}, X_1 \right] F'_{\mu, T} (H^E_{\star, b}) \right\} \right)$$

$$\begin{split} F'_{\mu,T} \text{ is the Fermi-Dirac distribution.} \\ \Rightarrow \lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_{L} \mathrm{i} \left[H^{E}_{\star,b}, X_{1} \right] F'_{\mu,T}(H^{E}_{\star,b}) \right\} \right) \text{ is the total edge current!} \\ (\to \text{ the limit is required because } \chi_{\infty} \mathrm{i} \left[H^{E}_{\star,b}, X_{1} \right] F'_{\mu,T}(H^{E}_{\star,b}) \text{ is not trace class at positive temperature!}) \end{split}$$

Left-hand side (the bulk):

$$-e\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = m_{\mu,T}(b)$$

is just the definition of the bulk magnetization.

What about the right-hand side (the edge)?

$$\lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right)$$

$$\begin{split} &F'_{\mu,T} \text{ is the Fermi-Dirac distribution.} \\ \Rightarrow \lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\star,b}, X_1 \right] F'_{\mu,T}(H^E_{\star,b}) \right\} \right) \text{ is the$$
total $edge current!} \\ & (\to \text{the limit is required because } \chi_\infty \mathrm{i} \left[H^E_{\star,b}, X_1 \right] F'_{\mu,T}(H^E_{\star,b}) \text{ is not trace class at positive temperature! }) \end{split}$

Left-hand side (the bulk):

$$-e\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = m_{\mu,T}(b)$$

is just the definition of the bulk magnetization.

What about the right-hand side (the edge)?

$$\lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right)$$

$$\begin{split} F'_{\mu,T} \text{ is the Fermi-Dirac distribution.} \\ \Rightarrow \lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{{\scriptscriptstyle \bullet},b}, X_1 \right] F'_{\mu,T}(H^E_{{\scriptscriptstyle \bullet},b}) \right\} \right) \text{ is the total edge current!} \\ (\to \text{ the limit is required because } \chi_\infty \mathrm{i} \left[H^E_{{\scriptscriptstyle \bullet},b}, X_1 \right] F'_{\mu,T}(H^E_{{\scriptscriptstyle \bullet},b}) \text{ is not trace class at positive temperature!}) \end{split}$$

Left-hand side (the bulk):

$$-e\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = m_{\mu,T}(b)$$

is just the definition of the bulk magnetization.

What about the right-hand side (the edge)?

$$\lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\boldsymbol{\cdot}, b}, X_1 \right] F'_{\mu, T}(H^E_{\boldsymbol{\cdot}, b}) \right\} \right)$$

$$\begin{split} F'_{\mu,T} \text{ is the Fermi-Dirac distribution.} \\ \Rightarrow \lim_{L \to \infty} \mathbb{E} \left(\operatorname{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{{\boldsymbol{\star}},b}, X_1 \right] F'_{\mu,T}(H^E_{{\boldsymbol{\star}},b}) \right\} \right) \text{ is the total edge current!} \\ (\to \text{ the limit is required because } \chi_\infty \mathrm{i} \left[H^E_{{\boldsymbol{\star}},b}, X_1 \right] F'_{\mu,T}(H^E_{{\boldsymbol{\star}},b}) \text{ is not trace class at positive temperature! }) \end{split}$$

The edge side

$$\begin{split} j_1^B(x_2) &:= \int_0^1 \, \mathrm{d}x_1 \, \mathbb{E}\left(\mathrm{i}\left[H_{b,\bullet}, X_1\right] F'_{\mu,T}(H_{b,\bullet})\right)(x_1, x_2; x_1, x_2) \\ j_1^E(x_2) &:= \int_0^1 \, \mathrm{d}x_1 \, \mathbb{E}\left(\mathrm{i}\left[H_{b,\bullet}^E, X_1\right] F'_{\mu,T}(H_{b,\bullet}^E)\right)(x_1, x_2; x_1, x_2) \end{split}$$

æ

イロト イヨト イヨト イヨト

The edge side

$$j_1^B(x_2) := \int_0^1 dx_1 \mathbb{E} \left(i \left[H_{b, \bullet}, X_1 \right] F'_{\mu, T}(H_{b, \bullet}) \right) (x_1, x_2; x_1, x_2)$$
$$j_1^E(x_2) := \int_0^1 dx_1 \mathbb{E} \left(i \left[H_{b, \bullet}^E, X_1 \right] F'_{\mu, T}(H_{b, \bullet}^E) \right) (x_1, x_2; x_1, x_2)$$

Theorem [M.M., B. Støttrup]

 j_1^E and j_1^B are smooth functions in $\mathbb{R}\times(0,+\infty)$ and

$$j_1^E(x_2) - j_1^B(x_2) = \mathcal{O}(x_2^{-\infty}) \qquad x_2 \to +\infty$$

The edge side

The total edge current is defined as

$$I_{1}^{E}(\mu, T, b) := \lim_{L \to \infty} \int_{0}^{L} \left(j_{1}^{E}(x_{2}) - \left(1 - g(x_{2}/L)\right) j_{1}^{B}(x_{2}) \right) dx_{2}$$

$$= \lim_{L \to \infty} \int_{0}^{L} g(x_{2}/L) j_{1}^{E}(x_{2}) dx_{2} .$$

$$\int_{1}^{g(\cdot/L)} \frac{1 - g(\cdot/L)}{x_{2}} dx_{2} d$$

$$I_1^E(\mu, T, b) := \lim_{L \to \infty} \int_0^L g(x_2/L) j_1^E(x_2) \, \mathrm{d}x_2 \, .$$

 \rightarrow We show that the value of I_1^E is actually **independent of the specific** cut-off function g and of the specific potential at the boundary $! \rightarrow !t$ is a very robust quantity that lives near the edge!

Physical interpretation II

Therefore we get the bulk-edge correspondence in the form:

$$m_{\mu,T}(b) = -eI_1^E(\mu, T, b).$$

Literature:

- Bulk side: Thorough analysis of the thermodynamic limit of the magnetization. Landau, Angelescu-Bundaru-Nenciu, Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc.
- Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz (JSP 1994).
 - Both restricted to pure Landau operator and high temperature (Maxwell-Boltzmann distribution).
 - \rightarrow our proof is far more general and allow to use the physically relevant Fermi-Dirac distribution (actually any Schwartz function!).

 \rightarrow What about the usual bulk-edge correspondence of transport coefficients $(\sigma_H = \sigma_E)$?

イロト イヨト イヨト イヨト
Therefore we get the bulk-edge correspondence in the form:

 $m_{\mu,T}(b) = -eI_1^E(\mu,T,b).$

Remarks:

- $m_{\mu,T}(b)$ is known as the orbital magnetization (spinless electrons).
- Classical system: orbital magnetization is always zero.
 - \rightarrow Bohr–Van Leeuwen theorem.
- $m_{\mu,T}(b) \neq 0$ is known as Landau diamagnetism.

Literature:

- Bulk side: Thorough analysis of the thermodynamic limit of the magnetization. Landau, Angelescu-Bundaru-Nenciu, Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc.
- Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz (JSP 1994).

Both restricted to pure Landau operator and high temperature (Maxwell-Boltzmann distribution).

 \rightarrow our proof is far more general and allow to use the physically relevant Fermi-Dirac distribution (actually any Schwartz function!).

(ロ) (四) (E) (E) (E) (E)

Therefore we get the bulk-edge correspondence in the form:

 $m_{\mu,T}(b) = -eI_1^E(\mu,T,b).$

Remarks:

- $m_{\mu,T}(b)$ is known as the orbital magnetization (spinless electrons).
- Classical system: orbital magnetization is always zero.
 - \rightarrow Bohr–Van Leeuwen theorem.
- $m_{\mu,T}(b) \neq 0$ is known as Landau diamagnetism.

Literature:

- Bulk side: Thorough analysis of the thermodynamic limit of the magnetization. Landau, Angelescu-Bundaru-Nenciu, Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc.
- Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz (JSP 1994).

Both restricted to pure Landau operator and high temperature (Maxwell-Boltzmann distribution).

 \rightarrow our proof is far more general and allow to use the physically relevant Fermi-Dirac distribution (actually any Schwartz function!).

(日)

Therefore we get the bulk-edge correspondence in the form:

 $m_{\mu,T}(b) = -eI_1^E(\mu,T,b).$

Remarks:

- $m_{\mu,T}(b)$ is known as the orbital magnetization (spinless electrons).
- Classical system: orbital magnetization is always zero.
 - \rightarrow Bohr–Van Leeuwen theorem.
- $m_{\mu,T}(b) \neq 0$ is known as Landau diamagnetism.

Literature:

- Bulk side: Thorough analysis of the thermodynamic limit of the magnetization. Landau, Angelescu-Bundaru-Nenciu, Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc.
- Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz (JSP 1994).

Both restricted to pure Landau operator and high temperature (Maxwell-Boltzmann distribution).

 \rightarrow our proof is far more general and allow to use the physically relevant Fermi-Dirac distribution (actually any Schwartz function!).

(ロ) (部) (E) (E) (E)

Therefore we get the bulk-edge correspondence in the form:

 $m_{\mu,T}(b) = -eI_1^E(\mu,T,b).$

Remarks:

- $m_{\mu,T}(b)$ is known as the orbital magnetization (spinless electrons).
- Classical system: orbital magnetization is always zero.
 - \rightarrow Bohr–Van Leeuwen theorem.
- $m_{\mu,T}(b) \neq 0$ is known as Landau diamagnetism.

Literature:

- Bulk side: Thorough analysis of the thermodynamic limit of the magnetization. Landau, Angelescu-Bundaru-Nenciu, Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc...
- Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz (JSP 1994).

Both restricted to pure Landau operator and high temperature (Maxwell-Boltzmann distribution).

 \rightarrow our proof is far more general and allow to use the physically relevant Fermi-Dirac distribution (actually any Schwartz function!).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Therefore we get the bulk-edge correspondence in the form:

$$m_{\mu,T}(b) = -eI_1^E(\mu, T, b).$$

Literature:

- Bulk side: Thorough analysis of the thermodynamic limit of the magnetization. Landau, Angelescu-Bundaru-Nenciu, Cornean-Briet-Savoie, Schulz-Baldes-Teufel, Teufel-Stiepan, etc...
- Connection with edge current: Macris-Martin-Pulè (CMP 1988), Kunz (JSP 1994).

Both restricted to pure Landau operator and high temperature (Maxwell-Boltzmann distribution).

 \rightarrow our proof is far more general and allow to use the physically relevant Fermi-Dirac distribution (actually any Schwartz function!).

 \rightarrow What about the usual bulk-edge correspondence of transport coefficients $(\sigma_H = \sigma_E)$?

Zero-temperature limit and bulk-edge correspondence

At positive temperature the pressure is C^2 in b and μ (Briet-Savoie RMP12):

$$\partial_{\mu} p_{\mu,T}(b) = n_{\mu,T}(b) = \mathbb{E}(\operatorname{Tr}(\chi_{\Omega} F'_{\mu,T}(H_{\omega,b})))$$

where $n_{\mu,T}(b)$ is the particle density.

 $\Rightarrow \partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$

Assume that the **almost sure spectrum** $\Sigma(b_0)$ of the bulk Hamiltonian H_{ω,b_0} , $b_0 \in \mathbb{R}$, **has a gap** that includes the interval $[e_-, e_+](\ni \mu)$ with $e_- < e_+$. $\rightarrow \sigma_0(b) := \Sigma(b) \cap (-\infty, e_-)$, $P_{\omega,b}$ the spectral projection onto $\sigma_0(b)$.

Středa formula [Cornean, Monaco, M.M. JEMS 21, ..

 $2\pi\partial_b n_{\mu,0}(b_0) = C_0 := 2\pi\mathbb{E}\left(\operatorname{Tr}\left(\chi_{\Omega} P_{\star,b_0} \mathrm{i}[[X_1, P_{\star,b_0}], [X_2, P_{\star,b_0}]]\right)\right) = \sigma_H \ (\in\mathbb{Z})$

 C_0 is the Chern character of the projection P_{ω,b_0} .

Zero-temperature limit and bulk-edge correspondence

At positive temperature the pressure is C^2 in b and μ (Briet-Savoie RMP12):

$$\partial_{\mu} p_{\mu,T}(b) = n_{\mu,T}(b) = \mathbb{E}(\operatorname{Tr}(\chi_{\Omega} F'_{\mu,T}(H_{\omega,b})))$$

where $n_{\mu,T}(b)$ is the particle density.

$$\Rightarrow \partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$$

Assume that the **almost sure spectrum** $\Sigma(b_0)$ of the bulk Hamiltonian H_{ω,b_0} , $b_0 \in \mathbb{R}$, **has a gap** that includes the interval $[e_-, e_+](\ni \mu)$ with $e_- < e_+$. $\rightarrow \sigma_0(b) := \Sigma(b) \cap (-\infty, e_-)$, $P_{\omega,b}$ the spectral projection onto $\sigma_0(b)$.

Středa formula [Cornean,Monaco, M.M. JEMS 21, ..

 $2\pi\partial_b n_{\mu,0}(b_0) = C_0 := 2\pi \mathbb{E} \left(\operatorname{Tr} \left(\chi_\Omega P_{\star,b_0} \mathbf{i} [[X_1, P_{\star,b_0}], [X_2, P_{\star,b_0}]] \right) \right) = \sigma_H \left(\in \mathbb{Z} \right)$

 C_0 is the Chern character of the projection $P_{\omega,b_0}.$

Zero-temperature limit and bulk-edge correspondence

At positive temperature the pressure is C^2 in b and μ (Briet-Savoie RMP12):

$$\partial_{\mu} p_{\mu,T}(b) = n_{\mu,T}(b) = \mathbb{E}(\operatorname{Tr}(\chi_{\Omega} F'_{\mu,T}(H_{\omega,b})))$$

where $n_{\mu,T}(b)$ is the particle density.

$$\Rightarrow \partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$$

Assume that the **almost sure spectrum** $\Sigma(b_0)$ of the bulk Hamiltonian H_{ω,b_0} , $b_0 \in \mathbb{R}$, **has a gap** that includes the interval $[e_-, e_+](\ni \mu)$ with $e_- < e_+$. $\rightarrow \sigma_0(b) := \Sigma(b) \cap (-\infty, e_-)$, $P_{\omega,b}$ the spectral projection onto $\sigma_0(b)$.

Středa formula [Cornean, Monaco, M.M. JEMS 21, ...]

$$2\pi\partial_b n_{\mu,0}(b_0) = C_0 := 2\pi\mathbb{E}\left(\operatorname{Tr}\left(\chi_{\Omega} P_{\boldsymbol{\cdot},b_0} \mathrm{i}\left[[X_1, P_{\boldsymbol{\cdot},b_0}], [X_2, P_{\boldsymbol{\cdot},b_0}]\right]\right)\right) = \sigma_H \ (\in\mathbb{Z})$$

 C_0 is the Chern character of the projection P_{ω,b_0} .

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

 \Rightarrow We recover the usual bulk-edge correspondence at zero temperature!

 $\sigma_H = e\mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty} i\left[H_{\star,b_0}^E, X_1\right] f_0'(H_{\star,b_0}^E)\right\}\right) = \sigma_E(=\partial_{\mu} I_1^E)$

Key ingredients: Středa formula + Zero-temperature Hall conductivity

 \rightarrow Starting point :

$$m_{\mu,T}(b) = I^E(\mu,T,b).$$

 \Rightarrow there might be states that contribute to the statistical derivative $(\partial_{\mu}I(\mu, T, b))$ but that **do not** contribute to transport!

イロト イヨト イヨト イヨト

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

 \Rightarrow We recover the usual bulk-edge correspondence at zero temperature!

 $\sigma_{H} = e\mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty}i\left[H_{\star,b_{0}}^{E}, X_{1}\right]f_{0}'(H_{\star,b_{0}}^{E})\right\}\right) = \sigma_{E}(=\partial_{\mu}I_{1}^{E})$

Key ingredients: Středa formula + Zero-temperature Hall conductivity

 \rightarrow Starting point :

$$m_{\mu,T}(b) = I^E(\mu,T,b).$$

 \Rightarrow there might be states that contribute to the statistical derivative $(\partial_{\mu}I(\mu, T, b))$ but that **do not** contribute to transport!

・ロト ・回ト ・ヨト ・ヨト

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

Proposition [H. Cornean, M.M., S. Teufel]

There exist two constants $C_1, C_2 > 0$ such that

$$\begin{aligned} |\partial_b n_{\mu,T}(b_0) - \sigma_H(\mu, 0, b)| &\leq C_1 \, \mathrm{e}^{-C_2/T} \\ \partial_\mu I^E(\mu, T, b_0) - \sigma_E(\mu, 0, b)| &\leq C_1 \, \mathrm{e}^{-C_2/T}. \end{aligned}$$

Moreover, let χ_{∞} denote the indicator function of the strip $S_{\infty} := [0,1] \times (0,\infty)$, then, independently of the specific choice f_0 , we have:

 $\lim_{T\searrow 0} \partial_b n_{\mu,T}(b_0) = \sigma_H(\mu,0,b) = \mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty} i\left[H^E_{\boldsymbol{\cdot},b_0},X_1\right]f_0'(H^E_{\boldsymbol{\cdot},b_0})\right\}\right) = \sigma_E(\mu,0,b).$

 $\Rightarrow \text{ We recover the usual bulk-edge correspondence at zero temperature!}$ $\sigma_{H} = e\mathbb{E}\left(\text{Tr}\left\{\chi_{\infty} i\left[H^{E}_{\star,b_{0}}, X_{1}\right] f_{0}'(H^{E}_{\star,b_{0}})\right\}\right) = \sigma_{E}(=\partial_{\mu}I^{E}_{1})$ Kev ingredients: **Středa formula + Zero-temperature Hall conductivity**

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

 \Rightarrow We recover the usual bulk-edge correspondence at zero temperature!

 $\sigma_H = e\mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty}i\left[H_{\bullet,b_0}^E, X_1\right]f_0'(H_{\bullet,b_0}^E)\right\}\right) = \sigma_E(=\partial_{\mu}I_1^E)$

New approach to bulk-edge correspondence based on magnetic perturbation theory

 \rightarrow Magnetic derivative of bulk/edge quantity.

Versatile approach suitable for the many-body setting

(Work in progress with J. Lampart, S. Teufel, T. Wessel)

Key ingredients: Středa formula + Zero-temperature Hall conductivity

 \rightarrow Starting point :

$$m_{\mu,T}(b) = I^E(\mu,T,b).$$

 \Rightarrow there might be states that contribute to the statistical derivative $(\partial_{\mu}I(\mu, T, b))$ but that **do not** contribute to transport!

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

 \Rightarrow We recover the usual bulk-edge correspondence at zero temperature!

 $\sigma_{H} = e\mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty} \mathrm{i}\left[H_{\bullet,b_{0}}^{E}, X_{1}\right] f_{0}'(H_{\bullet,b_{0}}^{E})\right\}\right) = \sigma_{E}(=\partial_{\mu}I_{1}^{E})$

Key ingredients: Středa formula + Zero-temperature Hall conductivity

- \rightarrow Problems:
 - Středa formula holds true only at zero temperature and with μ in a spectral gap.
 - Linear response theory at positive temperature? (Aizenman-Graf 1996; Cornean-Nenciu-Pedersen 2010)

 \rightarrow Starting point :

$$m_{\mu,T}(b) = I^E(\mu,T,b).$$

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

 \Rightarrow We recover the usual bulk-edge correspondence at zero temperature!

$$\sigma_H = e\mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty}i\left[H^E_{\boldsymbol{\cdot},b_0}, X_1\right]f'_0(H^E_{\boldsymbol{\cdot},b_0})\right\}\right) = \sigma_E(=\partial_{\mu}I^E_1)$$

Key ingredients: Středa formula + Zero-temperature Hall conductivity

 \rightarrow Starting point :

$$m_{\mu,T}(b) = I^E(\mu,T,b).$$

 \Rightarrow there might be states that contribute to the statistical derivative $(\partial_{\mu}I(\mu, T, b))$ but that **do not** contribute to transport!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- Maxwell relation: $\partial_{\mu}m_{\mu,T}(b) = \partial_{\mu}\partial_{b}p_{\mu,T}(b) = \partial_{b}n_{\mu,T}(b)$
- Středa formula: $2\pi \partial_b n_{\mu,0}(b_0) = \sigma_H(\mu, 0, b)$
- Our theorem : $m_{\mu,T}(b) = -eI^E(\mu,T,b)$

 \Rightarrow We recover the usual bulk-edge correspondence at zero temperature!

$$\sigma_H = e\mathbb{E}\left(\operatorname{Tr}\left\{\chi_{\infty}i\left[H^E_{\boldsymbol{\cdot},b_0}, X_1\right]f'_0(H^E_{\boldsymbol{\cdot},b_0})\right\}\right) = \sigma_E(=\partial_{\mu}I^E_1)$$

Key ingredients: Středa formula + Zero-temperature Hall conductivity

 \rightarrow Starting point :

$$m_{\mu,T}(b) = I^E(\mu,T,b).$$

 \Rightarrow there might be states that contribute to the statistical derivative $(\partial_{\mu}I(\mu, T, b))$ but that **do not** contribute to transport!

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

First emphasized by Haidu-Gummich '83, Cooper-Halperin-Ruzin '96, Středa 2006 -> Elgart-Graf-Schenker 2005

"For a quantum mechanical system in the presence of an applied magnetic field, however, there may be nonzero circulating currents even in a situation of thermodynamic equilibrium, as was noted above. We shall find it convenient to break the currents into a "transport" part and a "magnetization" part..." Cooper, Halperin, Ruzin. Phys. Rev. B 1996

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

Splitting the magnetization

$$m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$

 j^E_{mag} is a pure "magnetization current density", that is

$$j_{mag}^{E}(x) := \nabla \times m_{\mu,T}^{(circ)}(x).$$

First emphasized by Haidu-Gummich '83, Cooper-Halperin-Ruzin '96, Středa 2006 -> Elgart-Graf-Schenker 2005

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

$$\begin{split} m_{\mu,T}(b) &\approx \frac{1}{|\Lambda_L|} \operatorname{Tr} \Big((\partial_b H_{\Lambda}(b)) F'_{\mu,T}(H_{\Lambda}(b)) \Big) \\ &= -\frac{1}{|\Lambda_L|} \int_{\Lambda} dx \; x_2 \Big(P_1(b) \; F'_{\mu,T}(H_{\Lambda}(b)) \Big)(x,x). \end{split}$$

Splitting the magnetization

$$m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$

 j^E_{mag} is a pure "magnetization current density", that is

Massimo Moscolari (Tübingen)

General bulk-edge correspondence at $T \ge 0$

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

$$m_{\mu,T}(b) \approx \frac{1}{|\Lambda_L|} \operatorname{Tr} \left((\partial_b H_\Lambda(b)) F'_{\mu,T}(H_\Lambda(b)) \right)$$
$$= -\frac{1}{|\Lambda_L|} \int_\Lambda dx \ x_2 \Big(P_1(b) \ F'_{\mu,T}(H_\Lambda(b)) \Big)(x,x).$$

Splitting the magnetization

 $m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$

 j^E_{mag} is a pure "magnetization current density", that is

$$j^E_{mag}(x) := \nabla \times m^{(circ)}_{\mu,T}(x).$$

 \rightarrow Why this magnetization current influences only the edge? Smooth boundary $m^{(circ)}_{\pi\pi}(x) := \omega(x_2) m^{(circ)}_{\pi\pi} \rightarrow m^{(circ)}_{\pi\pi}$ is the constant saturation for an

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

$$m_{\mu,T}(b) \approx \frac{1}{|\Lambda_L|} \operatorname{Tr} \left((\partial_b H_\Lambda(b)) F'_{\mu,T}(H_\Lambda(b)) \right)$$
$$= -\frac{1}{|\Lambda_L|} \int_\Lambda dx \ x_2 \Big(P_1(b) \ F'_{\mu,T}(H_\Lambda(b)) \Big)(x,x).$$

Splitting the magnetization

 $m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$

 j_{mag}^{E} is a pure "magnetization current density", that is

$$j^E_{mag}(x) := \nabla \times m^{(circ)}_{\mu,T}(x).$$

 $(circ)(x) - \phi(x_0)m^{(circ)} \rightarrow m^{(circ)}$ is the phrelating an equilation of the second se Massimo Moscolari (Tübingen)

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

Splitting the magnetization

$$m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$

 j^E_{mag} is a pure "magnetization current density", that is

$$j_{mag}^{E}(x) := \nabla \times m_{\mu,T}^{(circ)}(x).$$

 \rightarrow Why this magnetization current influences only the edge?

 $\Rightarrow \quad I^E_{mag} = \int_{-\infty}^{\infty} dx_2 j^E_{mag}(x) = \int_{-\infty}^{\infty} dx_2 \partial_2(\varphi(x_2) m^{(circ)}_{\mu,T}) = m^{(circ)}_{\mu,T}.$

$$\Rightarrow I^{E} = I^{E}_{mag} + I^{E}_{tr} = m^{(circ)}_{\mu,T}(b) + m^{(res)}_{\mu,T}(b) = m_{\mu,T}(b)$$

In order to get the correct transport edge current we have to be able to split either the current or the magnetization!

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

Splitting the magnetization

$$m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$

 j^E_{mag} is a pure "magnetization current density", that is

$$j^E_{mag}(x) := \nabla \times m^{(circ)}_{\mu,T}(x).$$

 \rightarrow Why this magnetization current influences only the edge?

$$\Rightarrow \quad I^E_{mag} = \int_{-\infty}^{\infty} dx_2 j^E_{mag}(x) = \int_{-\infty}^{\infty} dx_2 \partial_2(\varphi(x_2) m^{(circ)}_{\mu,T}) = m^{(circ)}_{\mu,T}.$$

$$\Rightarrow I^{E} = I^{E}_{mag} + I^{E}_{tr} = m^{(circ)}_{\mu,T}(b) + m^{(res)}_{\mu,T}(b) = m_{\mu,T}(b)$$

In order to get the correct transport edge current we have to be able to split either the current or the magnetization!

Splitting the edge current density

$$j^E(x) = j^E_{mag}(x) + j^E_{tr}(x)$$

Splitting the magnetization

$$m_{\mu,T}(b) = m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$

 j^E_{mag} is a pure "magnetization current density", that is

$$j^E_{mag}(x) := \nabla \times m^{(circ)}_{\mu,T}(x).$$

 \rightarrow Why this magnetization current influences only the edge?

$$\Rightarrow \quad I^E_{mag} = \int_{-\infty}^{\infty} dx_2 j^E_{mag}(x) = \int_{-\infty}^{\infty} dx_2 \partial_2(\varphi(x_2) m^{(circ)}_{\mu,T}) = m^{(circ)}_{\mu,T}.$$

$$\Rightarrow I^{E} = I^{E}_{mag} + I^{E}_{tr} = m^{(circ)}_{\mu,T}(b) + m^{(res)}_{\mu,T}(b) = m_{\mu,T}(b)$$

In order to get the correct transport edge current we have to be able to split either the current or the magnetization!

Setting:

Bulk Hamiltonian $H_b = \frac{1}{2}(-i\nabla - bA)^2$

Spectrum given by infinitely degenerate eigenvalue $\{E_{n,b} = b(n + \frac{1}{2}) | n \in \mathbb{N}\}$. $\Pi_{n,b}$ spectral projection onto $E_{n,b}$.

Integrated density of states associated to each Landau level:

$$\lim_{L \to \infty} \frac{\operatorname{Tr}(\chi_{\Lambda_L} \Pi_{n,b})}{L^2} = \operatorname{Tr}(\chi_{\Omega} \Pi_{n,b}) = \frac{b}{2\pi}$$

Hall conductivity for $T \ge 0$ (Evaluation of Kubo formula, Cornean-Nenciu-Pedersen 2006, physics paper...):

$$\sigma_H(\mu, T, b) = -\frac{n_{\mu, T}(b)}{b}.$$

ightarrow The pressure is simply given by

$$p_{\mu,T}(b) = -\sum_{n=0}^{\infty} F_{\mu,T}(E_{n,b}) \operatorname{Tr}(\chi_{\Omega} \Pi_{n,b}) = -\sum_{n=0}^{\infty} F_{\mu,T}(E_{n,b}) \frac{b}{2\pi}$$

 $dE_{n,b} \not\models \qquad \mathbb{P}_{\mu,T}(\not\models)$

Setting: $\begin{aligned} H_b &= \frac{1}{2}(-i\nabla - bA)^2 \\ \left\{ E_{n,b} &= b(n + \frac{1}{2}) \mid n \in \mathbb{N} \right\}. \text{ I.d.s.: } \operatorname{Tr}(\chi_\Omega \Pi_{n,b}) &= \frac{b}{2\pi}. \end{aligned}$ Hall conductivity for $T \geq 0$: $\sigma_H(\mu, T, b) &= -\frac{n_{\mu,T}(b)}{b}. \end{aligned}$

 \rightarrow The pressure is simply given by

$$p_{\mu,T}(b) = -\sum_{n=0}^{\infty} F_{\mu,T}(E_{n,b}) \operatorname{Tr}(\chi_{\Omega} \Pi_{n,b}) = -\sum_{n=0}^{\infty} F_{\mu,T}(E_{n,b}) \frac{b}{2\pi}$$

$$\Rightarrow m_{\mu,T}(b) := -\partial_b p_{\mu,T}(b) = \sum_{n=1}^{\infty} F'_{\mu,T}(E_{n,b}) \frac{dE_{n,b}}{db} \frac{b}{2\pi} - \frac{p_{\mu,T}(b)}{b}$$
$$=: m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$

$$\Rightarrow (\partial_b n_{\mu,T}(b) =) \partial_\mu m_{\mu,T}(b) = \left| \sum_{n=1}^{\infty} F_{\mu,T}''(E_{n,b}) \frac{dE_{n,b}}{db} \frac{b}{2\pi} \right| + \sigma_H(\mu,T,b)$$

Setting: $H_b = \frac{1}{2}(-i\nabla - bA)^2$

 $\{E_{n,b} = b(n + \frac{1}{2}) \mid n \in \mathbb{N} \}. \text{ I.d.s.: } \operatorname{Tr}(\chi_{\Omega} \Pi_{n,b}) = \frac{b}{2\pi}.$ Hall conductivity for $T \ge 0$: $\sigma_H(\mu, T, b) = -\frac{n_{\mu,T}(b)}{b}.$

 \rightarrow The pressure is simply given by

$$p_{\mu,T}(b) = -\sum_{n=0}^{\infty} F_{\mu,T}(E_{n,b}) \operatorname{Tr}(\chi_{\Omega} \Pi_{n,b}) = -\sum_{n=0}^{\infty} F_{\mu,T}(E_{n,b}) \frac{b}{2\pi}$$

 \sim

$$\Rightarrow m_{\mu,T}(b) := -\partial_b p_{\mu,T}(b) = \sum_{n=1}^{\infty} F'_{\mu,T}(E_{n,b}) \frac{dE_{n,b}}{db} \frac{b}{2\pi} - \frac{p_{\mu,T}(b)}{b}$$
$$=: m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$$
$$(\partial_b n_{\mu,T}(b) =) \partial_\mu m_{\mu,T}(b) = \left[\sum_{n=1}^{\infty} F''_{\mu,T}(E_{n,b}) \frac{dE_{n,b}}{db} \frac{b}{2\pi}\right] + \sigma_H(\mu,T,b)$$

Massimo Moscolari (Tübingen)

 \Rightarrow

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

 $\Rightarrow m_{\mu,T}^{circ}(b)$ is the part of the magnetization given by the local circulation \Rightarrow we have to subtract the associated edge current contribution:

 $m_{\mu,T}^{circ}(b) = I_{mag}(\mu, T, b)$

Our formula (*)

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

 $m_{\mu,T}^{res}(b) = m_{\mu,T}(b) - m_{\mu,T}^{circ}(b) = I^E(\mu,T,b) - I^E_{mag}(\mu,T,b) = I^E_{tr}(\mu,T,b)$

Bulk-edge correspondence at $T \ge 0$ [Cornean, M.M., Teufel] $\sigma_H(\mu, T, b) = -\frac{n_{\mu,T,b}}{b} = \partial_\mu m_{\mu,T}^{res}(b) = \partial_\mu I_{tr}^E(\mu, T, b) = \sigma_E(\mu, T, b)$

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

- $\frac{b}{2\pi}$ is the number of states per unit area. $F_{n}^{\prime}T(E_{n,b})$ is the statistical weight.

• What about
$$\frac{d}{db}E_{n,b} = n$$
?
 \rightarrow "Hellmann-Feynman theorem", $\{\psi_{n,m}\}_{m\in\mathbb{Z}}$ o.n.b. for Ran $\Pi_{n,b}$

$$\langle \psi_{n,m}, \frac{1}{2}\mathbf{x} \times \mathbf{p}\psi_{n,m} \rangle = \langle \psi_{n,m}, L\psi_{n,m} \rangle = n.$$

$$m_{\mu,T}^{circ}(b) = I_{mag}(\mu,T,b)$$

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

・ロト ・同ト ・ヨト ・ヨト

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

- $\frac{b}{2\pi}$ is the number of states per unit area. $F'_{\mu,T}(E_{n,b})$ is the statistical weight.

• What about
$$\frac{d}{db}E_{n,b} = n$$
?
 \rightarrow "Hellmann-Feynman theorem", $\{\psi_{n,m}\}_{m\in\mathbb{Z}}$ o.n.b. for Ran $\Pi_{n,b}$

$$\langle \psi_{n,m}, \frac{1}{2}\mathbf{x} \times \mathbf{p}\psi_{n,m} \rangle = \langle \psi_{n,m}, L\psi_{n,m} \rangle = n.$$

$$m_{\mu,T}^{circ}(b) = I_{mag}(\mu,T,b)$$

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

- $\frac{b}{2\pi}$ is the number of states per unit area.
- $\tilde{F}'_{\mu,T}(E_{n,b})$ is the statistical weight.
- What about $\frac{d}{db}E_{n,b} = n$? \rightarrow "Hellmann-Feynman theorem", $\{\psi_{n,m}\}_{m\in\mathbb{Z}}$ o.n.b. for Ran $\Pi_{n,b}$

$$\langle \psi_{n,m}, \frac{1}{2}\mathbf{x} \times \mathbf{p}\psi_{n,m} \rangle = \langle \psi_{n,m}, L\psi_{n,m} \rangle = n.$$

 $\Rightarrow m_{\mu,T}^{circ}(b)$ is the part of the magnetization given by the local circulation \Rightarrow we have to subtract the associated edge current contribution:

$$m_{\mu,T}^{circ}(b) = I_{mag}(\mu, T, b)$$

Our formula (*)

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

- $\frac{b}{2\pi}$ is the number of states per unit area.
- $\tilde{F}'_{\mu,T}(E_{n,b})$ is the statistical weight.
- What about $\frac{d}{db}E_{n,b} = n$? \rightarrow "Hellmann-Feynman theorem", $\{\psi_{n,m}\}_{m\in\mathbb{Z}}$ o.n.b. for Ran $\Pi_{n,b}$

$$\langle \psi_{n,m}, \frac{1}{2}\mathbf{x} \times \mathbf{p}\psi_{n,m} \rangle = \langle \psi_{n,m}, L\psi_{n,m} \rangle = n.$$

 $\Rightarrow m_{\mu,T}^{circ}(b)$ is the part of the magnetization given by the local circulation \Rightarrow we have to subtract the associated edge current contribution:

 $m_{\mu,T}^{circ}(b) = I_{mag}(\mu, T, b)$

Our formula (*)

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

 $\Rightarrow m_{\mu,T}^{circ}(b)$ is the part of the magnetization given by the local circulation \Rightarrow we have to subtract the associated edge current contribution:

$$m_{\mu,T}^{circ}(b) = I_{mag}(\mu, T, b)$$

Our formula (*)

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

 $m_{\mu,T}^{res}(b) = m_{\mu,T}(b) - m_{\mu,T}^{circ}(b) = I^E(\mu,T,b) - I^E_{mag}(\mu,T,b) = I^E_{tr}(\mu,T,b)$

Bulk-edge correspondence at $T \ge 0$ [Cornean, M.M., Teufel] $\sigma_H(\mu, T, b) = -\frac{n_{\mu,T,b}}{b} = \partial_\mu m_{\mu,T}^{res}(b) = \partial_\mu I_{tr}^E(\mu, T, b) = \sigma_E(\mu, T, b)$

$$m_{\mu,T}^{circ}(b) := \sum_{n=1}^{\infty} F_{\mu,T}'(E_{n,b}) \frac{d}{db} E_{n,b} \frac{b}{2\pi}$$

is magnetic moment per unit area.

 $\Rightarrow m_{\mu,T}^{circ}(b)$ is the part of the magnetization given by the local circulation \Rightarrow we have to subtract the associated edge current contribution:

$$m_{\mu,T}^{circ}(b) = I_{mag}(\mu, T, b)$$

Our formula (*)

$$\Rightarrow \quad m_{\mu,T}(b) = I^E(\mu,T,b)$$

 $m_{\mu,T}^{res}(b) = m_{\mu,T}(b) - m_{\mu,T}^{circ}(b) = I^E(\mu,T,b) - I^E_{mag}(\mu,T,b) = I^E_{tr}(\mu,T,b)$

Bulk-edge correspondence at $T \ge 0$ [Cornean, M.M., Teufel] $\sigma_H(\mu, T, b) = -\frac{n_{\mu,T,b}}{b} = \partial_\mu m_{\mu,T}^{res}(b) = \partial_\mu I_{tr}^E(\mu, T, b) = \sigma_E(\mu, T, b)$

What about the splitting of the magnetization in (more) general situations?

Theorem [Schulz–Baldes-Teufel 12 ; Teufel-Stiepan 13]

In tight-binding model, with M simple isolated Bloch bands we have:

$$m_{\mu,T}(b) = \sum_{l=1}^{M} \int_{\mathbb{B}_{b}} \frac{dk}{(2\pi)^{d}} \left(F'_{\mu,T} \left(E_{l}(k) \right) R^{(l)}_{j+1,j+2}(k) + F_{\mu,T}(E_{l}(k)) \Omega^{(l)}_{1,2}(k) \right)$$

=: $m^{circ}_{\mu,T}(b) + m^{res}_{\mu,T}(b)$

Conjecture [See Bellissard-vanElst-Schulz–Baldes;Niu et al.;Resta et al.,]

 $\sigma_H(\mu, T, b) = \partial_\mu m_{\mu, T}^{res}(b)$

 \Rightarrow the conjecture coupled with our formula (*) would imply bulk-edge correspondence at $T \ge 0$.

Massimo Moscolari (Tübingen)

・ロト ・ 同ト ・ ヨト ・ ヨト

What about the splitting of the magnetization in (more) general situations?

Theorem [Schulz–Baldes-Teufel 12 ; Teufel-Stiepan 13]

In tight-binding model, with M simple isolated Bloch bands we have:

$$m_{\mu,T}(b) = \sum_{l=1}^{M} \int_{\mathbb{B}_{b}} \frac{dk}{(2\pi)^{d}} \left(F'_{\mu,T} \left(E_{l}(k) \right) R^{(l)}_{j+1,j+2}(k) + F_{\mu,T}(E_{l}(k)) \Omega^{(l)}_{1,2}(k) \right)$$

=: $m^{circ}_{\mu,T}(b) + m^{res}_{\mu,T}(b)$

where $R_{1,2}^{(l)}$ is the Rammal-Wilkinson tensor and $\Omega_{1,2}^{(l)}(k)$ is the Berry curvature:

$$R_{1,2}^{(l)}(k) = \frac{i}{2} \left(\operatorname{Tr} \left(P_l(k) \partial_1 P_l(k) \left(H(k) - E_l(k) \right) \partial_2 P_l(k) \right) - (1 \leftrightarrow 2) \right)$$

$$\Omega_{1,2}^{(l)}(k) = i \operatorname{Tr} \left(P_l(k) \left[\partial_1 P_l(k), \partial_2 P_l(k) \right] \right)$$

Conjecture [See Bellissard-vanElst-Schulz–Baldes;Niu et al.;Resta et al.,]

 $T_{T}(\mu, T, h) = \partial_{\tau} m^{res}(h)$

What about the splitting of the magnetization in (more) general situations?

Theorem [Schulz–Baldes-Teufel 12 ; Teufel-Stiepan 13]

In tight-binding model, with M simple isolated Bloch bands we have:

$$m_{\mu,T}(b) = \sum_{l=1}^{M} \int_{\mathbb{B}_{b}} \frac{dk}{(2\pi)^{d}} \left(F'_{\mu,T} \left(E_{l}(k) \right) R^{(l)}_{j+1,j+2}(k) + F_{\mu,T}(E_{l}(k)) \Omega^{(l)}_{1,2}(k) \right)$$

=: $m^{circ}_{\mu,T}(b) + m^{res}_{\mu,T}(b)$

Conjecture [See Bellissard-vanElst-Schulz-Baldes;Niu et al.;Resta et al.,]

 $\sigma_H(\mu, T, b) = \partial_\mu m_{\mu, T}^{res}(b)$

 \Rightarrow the conjecture coupled with our formula (*) would imply bulk-edge correspondence at $T \geq 0.$

ヘロン 人間 とくほ とくほう

What about the splitting of the magnetization in (more) general situations?

Theorem [Schulz–Baldes-Teufel 12 ; Teufel-Stiepan 13]

In tight-binding model, with M simple isolated Bloch bands we have:

$$m_{\mu,T}(b) = \sum_{l=1}^{M} \int_{\mathbb{B}_{b}} \frac{dk}{(2\pi)^{d}} \left(F_{\mu,T}'(E_{l}(k)) R_{j+1,j+2}^{(l)}(k) + F_{\mu,T}(E_{l}(k)) \Omega_{1,2}^{(l)}(k) \right)$$

=: $m_{\mu,T}^{circ}(b) + m_{\mu,T}^{res}(b)$

Conjecture [See Bellissard-vanElst-Schulz-Baldes;Niu et al.;Resta et al.,]

$$\sigma_H(\mu, T, b) = \partial_\mu m_{\mu, T}^{res}(b)$$

 \Rightarrow the conjecture coupled with our formula (*) would imply bulk-edge correspondence at $T\geq 0.$
Theorem [H. Cornean, M.M., S.Teufel]

First, $p_{\mu,T}(\cdot)$ and $P_{\mu,T}^{(L,\omega)}(\cdot)$ are everywhere differentiable and, for a.e. $\omega \in \Theta$:

$$p_{\mu,T}^{(E)}(b) = \lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = p_{\mu,T}(b), \quad \lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}}{\mathrm{d}b}(b) = \frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b).$$

Moreover, let $g \in C^1([0,1])$ be any function such that g(0) = 1 and g(1) = 0. Define $\tilde{\chi}_L(\mathbf{x}) := \chi_L(\mathbf{x})g(x_2/L)$. Then independently of g we have:

$$\frac{\mathrm{d}p_{\mu,T}}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E} \left(\mathrm{Tr} \left\{ \widetilde{\chi}_L \mathrm{i} \left[H^E_{\star,b}, X_1 \right] F'_{\mu,T}(H^E_{\star,b}) \right\} \right). \tag{*}$$

Mathematical framework - The bulk-edge model

$$\Omega := [0, 1]^2$$

is the unit cell of the bulk Hamiltonian and χ_{Ω} is characteristic function of Ω .

$$\mathcal{S}_L := [0,1] \times [0,L]$$

 χ_L characteristic function of \mathcal{S}_L .

$$\mathcal{S}_\infty:=[0,1]\times[0,\infty]$$

 χ_{∞} characteristic function of \mathcal{S}_{∞} .

Step 0.: Trace class properties, regularities of integral kernels and vanishing of equilibrium "current", that is

$$\mathbb{E}\left(\mathrm{Tr}\left(\chi_{\Omega}\mathrm{i}[H_{\bullet,b},X_i]F'(H_{\bullet,b})\right)\right) = 0, \qquad i \in \{1,2\}.$$

Step 1. Edge pressure coincides in the limit with the bulk pressure :

$$\lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = \lim_{L \to \infty} \frac{1}{L} \operatorname{Tr} \left(\chi_L F(H_{\omega,b}^E) \right) = p_{\mu,T}(b) \,.$$

 \rightarrow Main tool: geometric perturbation theory:

 $L \ge 1$; Strip near the edge: $\Xi_L(t) := \left\{ \mathbf{x} \in E \mid \operatorname{dist}(\mathbf{x}, \partial E) \le t\sqrt{L} \right\}, t > 0.$ $0 \le \eta_0, \eta_L \le 1$, smooth functions and only depending on x_2 such that $\eta_0(\mathbf{x}) + \eta_L(\mathbf{x}) = 1$ for every $\mathbf{x} \in E$

Take $0 \leq \tilde{\eta}_0, \tilde{\eta}_L \leq 1$ again only depending on x_2 , such that they are a sort of stretched version of η_0 and η_L (no partition of unity in this case).

$$U_{L,\omega}(z) := \widetilde{\eta}_L \left(H_{\omega,b} - z \right)^{-1} \eta_L + \widetilde{\eta}_0 \left(H_{\omega,b}^E - z \right)^{-1} \eta_0.$$

 $W_{L,\omega}(z) := \left(-2i\nabla \widetilde{\eta}_L \cdot \left(-i\nabla - \mathcal{A} - bA\right) - \left(\Delta \widetilde{\eta}_L\right)\right) \left(H_{\omega,b} - z\right)^{-1} \eta_L$

<□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>
 <□>

Step 0.: Trace class properties, regularities of integral kernels and vanishing of equilibrium "current", that is

$$\mathbb{E}\left(\operatorname{Tr}\left(\chi_{\Omega}\mathrm{i}[H_{\bullet,b},X_i]F'(H_{\bullet,b})\right)\right) = 0, \qquad i \in \{1,2\}.$$

 \rightarrow Main difficulty/novelty: *F* does not have compact support (*F* is a Scwhartz function and the spectrum is only unbounded from below)!

 \rightarrow Main tool: Helffer-Sjöstrand formula

$$F(H_{\omega}^{E/}) = -\frac{1}{\pi} \int_{\mathbb{R} \times [-1,1]} \mathrm{d}z_1 \mathrm{d}z_2 \,\bar{\partial}F_N(z) (H_{\omega}^{E/} - z)^{-1}, \quad z = z_1 + \mathrm{i}z_2,$$

 F_N is an almost analytic extension of F, that is: Let $0 \le g(y) \le 1$ with $g \in C_0^{\infty}(\mathbb{R})$ such that g(y) = 1 if $|y| \le 1/2$ and g(y) = 0 if |y| > 1. Fix some $N \ge 2$ and define

$$F_N(z_1 + iz_2) := g(z_2) \sum_{j=0}^N \frac{1}{j!} \frac{\partial^j F}{\partial z_1^{j}}(z_1)(iz_2)^j.$$

+ regularity and decay estimates on $\left(H_{\omega,b}^{\ /E}-z
ight)^{-1}$. Stepd , Edge, ressu

Step 0.: Trace class properties, regularities of integral kernels and vanishing of equilibrium "current"

Step 1. Edge pressure coincides in the limit with the bulk pressure :

$$\lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = \lim_{L \to \infty} \frac{1}{L} \operatorname{Tr} \left(\chi_L F(H_{\omega,b}^E) \right) = p_{\mu,T}(b) \,.$$

 \rightarrow Main tool: geometric perturbation theory:

 $L \ge 1$; Strip near the edge: $\Xi_L(t) := \left\{ \mathbf{x} \in E \, | \, \mathrm{dist}(\mathbf{x}, \partial E) \le t \sqrt{L} \right\}, t > 0.$

 $0 \le \eta_0, \eta_L \le 1$, smooth functions and only depending on x_2 such that $\eta_0(\mathbf{x}) + \eta_L(\mathbf{x}) = 1$ for every $\mathbf{x} \in E$

Take $0 \leq \tilde{\eta}_0, \tilde{\eta}_L \leq 1$ again only depending on x_2 , such that they are a sort of stretched version of η_0 and η_L (no partition of unity in this case).

$$U_{L,\omega}(z) := \widetilde{\eta}_L \left(H_{\omega,b} - z \right)^{-1} \eta_L + \widetilde{\eta}_0 \left(H_{\omega,b}^E - z \right)^{-1} \eta_0.$$

 $W_{L,\omega}(z) := \left(-2\mathrm{i}\nabla\widetilde{\eta}_L \cdot \left(-\mathrm{i}\nabla - \mathcal{A} - bA\right) - \left(\Delta\widetilde{\eta}_L\right)\right) \left(H_{\omega,b} - z\right)^{-1} \eta_L$

 $\left(-2\mathrm{i}\nabla\widetilde{\eta}_{0}\cdot\left(-\mathrm{i}\nabla-\mathcal{A}-bA\right)-\left(\Delta\widetilde{\eta}_{0}\right)\right)\left(H_{\omega,b}^{E}-z\right)^{-1}\eta_{0}.$

Step 0.: Trace class properties, regularities of integral kernels and vanishing of equilibrium "current"

Step 1. Edge pressure coincides in the limit with the bulk pressure :

$$\lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = \lim_{L \to \infty} \frac{1}{L} \operatorname{Tr} \left(\chi_L F(H_{\omega,b}^E) \right) = p_{\mu,T}(b) \,.$$

 \rightarrow Main tool: geometric perturbation theory:

$$U_{L,\omega}(z) := \widetilde{\eta}_L \left(H_{\omega,b} - z \right)^{-1} \eta_L + \widetilde{\eta}_0 \left(H_{\omega,b}^E - z \right)^{-1} \eta_0.$$

Step 1. Edge pressure coincides in the limit with the bulk pressure :

$$\lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = \lim_{L \to \infty} \frac{1}{L} \operatorname{Tr} \left(\chi_L F(H_{\omega,b}^E) \right) = p_{\mu,T}(b) \,.$$

 \rightarrow Main tool: geometric perturbation theory:

 $L \ge 1$; Strip near the edge: $\Xi_L(t) := \left\{ \mathbf{x} \in E \mid \operatorname{dist}(\mathbf{x}, \partial E) \le t\sqrt{L} \right\}, t > 0.$ $0 \le \eta_0, \eta_L \le 1$, smooth functions and only depending on x_2 such that $\eta_0(\mathbf{x}) + \eta_L(\mathbf{x}) = 1$ for every $\mathbf{x} \in E$, and satisfying

$$\begin{split} \sup(\eta_0) &\subset \Xi_L(2),\\ \sup(\eta_L) &\subset E \setminus \Xi_L(1),\\ \|\partial_2^n \eta_i\|_{\infty} &\simeq L^{-\frac{n}{2}}, \quad n \geq 1, \quad i \in \{0, L\} \,. \end{split}$$

Take $0 \leq \tilde{\eta}_0, \tilde{\eta}_L \leq 1$ again only depending on x_2 , such that they are a sort of stretched version of η_0 and η_L (no partition of unity in this case).

$$U_{L,\omega}(z) := \widetilde{\eta}_L \left(H_{\omega,b} - z \right)^{-1} \eta_L + \widetilde{\eta}_0 \left(H_{\omega,b}^E - z \right)^{-1} \eta_0.$$
$$W_{L,\omega}(z) := \left(-2i\nabla \widetilde{\eta}_L \cdot \left(-i\nabla - \mathcal{A} - bA \right) - \left(\Delta \widetilde{\eta}_L \right) \right) \left(H_{\omega,b} - z \right)^{-1} \eta_L$$

Step 1. Edge pressure coincides in the limit with the bulk pressure :

$$\lim_{L \to \infty} P_{\mu,T}^{(L,\omega)}(b) = \lim_{L \to \infty} \frac{1}{L} \operatorname{Tr} \left(\chi_L F(H_{\omega,b}^E) \right) = p_{\mu,T}(b) \,.$$

 \rightarrow Main tool: geometric perturbation theory:

 $L \ge 1$; Strip near the edge: $\Xi_L(t) := \left\{ \mathbf{x} \in E \mid \operatorname{dist}(\mathbf{x}, \partial E) \le t\sqrt{L} \right\}, t > 0.$ $0 \le \eta_0, \eta_L \le 1$, smooth functions and only depending on x_2 such that $\eta_0(\mathbf{x}) + \eta_L(\mathbf{x}) = 1$ for every $\mathbf{x} \in E$

Take $0 \leq \tilde{\eta}_0, \tilde{\eta}_L \leq 1$ again only depending on x_2 , such that they are a sort of stretched version of η_0 and η_L (no partition of unity in this case).

$$U_{L,\omega}(z) := \widetilde{\eta}_L \left(H_{\omega,b} - z\right)^{-1} \eta_L + \widetilde{\eta}_0 \left(H_{\omega,b}^E - z\right)^{-1} \eta_0.$$

$$W_{L,\omega}(z) := \left(-2i\nabla \widetilde{\eta}_L \cdot \left(-i\nabla - \mathcal{A} - bA\right) - \left(\Delta \widetilde{\eta}_L\right)\right) \left(H_{\omega,b} - z\right)^{-1} \eta_L$$

$$\left(-2i\nabla \widetilde{\eta}_0 \cdot \left(-i\nabla - \mathcal{A} - bA\right) - \left(\Delta \widetilde{\eta}_0\right)\right) \left(H_{\omega,b}^E - z\right)^{-1} \eta_0.$$

The resolvent of the edge Hamiltonian obeys the identity:

$$(H_{\omega,b}^E - z)^{-1} = U_{L,\omega}(z) - (H_{\omega,b}^E - z)^{-1} W_{L,\omega}(z).$$

Step 2. The magnetic derivative of the edge pressure has a thermodynamic limit:

$$\lim_{L\to\infty}\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b)=\lim_{L\to\infty}\mathbb{E}\left(\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b)\right)=\frac{\mathrm{d}p_{\mu,T}(b)}{\mathrm{d}b}\quad\text{for a.e. }\omega\in\Theta.$$

ightarrow Magnetic derivative and thermodynamic limit commute!

Step 3.The limit of the magnetic derivative of the edge pressure is an edge current :

$$\lim_{L \to \infty} -\mathbb{E}\left(\int_0^1 \mathrm{d}x_1 \int_0^L \mathrm{d}x_2 \ g\left(\frac{x_2}{L}\right) \ \left\{\mathrm{i}[H^E_{\star,b}, X_1]F'(H^E_{\star,b})\right\}(x_1, x_2; x_1, x_2)\right)$$

 \rightarrow Exploit Step 2.

 \rightarrow Previous trace class estimates + vanishing of the equilibrium current allows to prove that the limit is independent from g.

・ロト ・ 同ト ・ ヨト ・ ヨト

Step 2. The magnetic derivative of the edge pressure has a thermodynamic limit:

$$\lim_{L\to\infty}\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b) = \lim_{L\to\infty}\mathbb{E}\left(\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b)\right) = \frac{\mathrm{d}p_{\mu,T}(b)}{\mathrm{d}b} \quad \text{ for a.e. } \omega\in\Theta.$$

\rightarrow Magnetic derivative and thermodynamic limit commute!

→ **New mathematical tool**: We extended gauge covariant magnetic perturbation theory (Cornean-Nenciu '00) to operators defined on domains with boundary.

Modified asymmetric phase $arphi(\mathbf{x},\mathbf{y}):=(y_1-x_1)y_2$

$$(P_{x_1} - \epsilon A_1(\mathbf{x})) \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} = \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} (P_{x_1} - \epsilon A_1(\mathbf{x} - \mathbf{y})).$$

 $\rightarrow S^{E}_{\omega,\epsilon,z}(\mathbf{x};\mathbf{y}) := \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} \left(H^{E}_{\omega,b} - z \right)^{-1}(\mathbf{x};\mathbf{y}) \text{ is an "almost inverse" for the magnetically perturbed edge operator } \left(H^{E}_{\omega,b+\epsilon} - z \right):$

$$\left(H_{\omega,b+\epsilon}^E - z\right)S_{\omega,\epsilon,z}^E = 1 + T_{\omega,\epsilon,z}^E$$

 \Rightarrow Explicit resolvent expansion in ϵ as $\epsilon \rightarrow 0$

(日)

Step 2. The magnetic derivative of the edge pressure has a thermodynamic limit:

$$\lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}(b)}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}(b)}{\mathrm{d}b}(b)\right) = \frac{\mathrm{d}p_{\mu,T}(b)}{\mathrm{d}b} \quad \text{ for a.e. } \omega \in \Theta.$$

 \rightarrow Magnetic derivative and thermodynamic limit commute!

 \rightarrow New mathematical tool: We extended gauge covariant magnetic perturbation theory (Cornean-Nenciu '00) to operators defined on domains with boundary.

Modified asymmetric phase $\varphi(\mathbf{x}, \mathbf{y}) := (y_1 - x_1)y_2$

$$(P_{x_1} - \epsilon A_1(\mathbf{x})) \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} = \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} (P_{x_1} - \epsilon A_1(\mathbf{x} - \mathbf{y})).$$

 $\rightarrow S^E_{\omega,\epsilon,z}(\mathbf{x};\mathbf{y}) := \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} \left(H^E_{\omega,b} - z\right)^{-1}(\mathbf{x};\mathbf{y}) \text{ is an "almost inverse" for the magnetically perturbed edge operator } \left(H^E_{\omega,b+\epsilon} - z\right):$

 \Rightarrow Explicit resolvent expansion in ϵ as $\epsilon \rightarrow 0$.

イロト イヨト イヨト イヨト ヨー わへの

Step 2. The magnetic derivative of the edge pressure has a thermodynamic limit:

$$\lim_{L \to \infty} \frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}(b)}{\mathrm{d}b}(b) = \lim_{L \to \infty} \mathbb{E}\left(\frac{\mathrm{d}P_{\mu,T}^{(L,\omega)}(b)}{\mathrm{d}b}(b)\right) = \frac{\mathrm{d}p_{\mu,T}(b)}{\mathrm{d}b} \quad \text{ for a.e. } \omega \in \Theta.$$

 \rightarrow Magnetic derivative and thermodynamic limit commute!

 \rightarrow New mathematical tool: We extended gauge covariant magnetic perturbation theory (Cornean-Nenciu '00) to operators defined on domains with boundary.

Modified asymmetric phase $\varphi(\mathbf{x}, \mathbf{y}) := (y_1 - x_1)y_2$

$$(P_{x_1} - \epsilon A_1(\mathbf{x})) \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} = \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} (P_{x_1} - \epsilon A_1(\mathbf{x} - \mathbf{y})).$$

 $\rightarrow S^E_{\omega,\epsilon,z}(\mathbf{x};\mathbf{y}) := \mathbf{e}^{\mathbf{i}\epsilon\varphi(\mathbf{x},\mathbf{y})} \left(H^E_{\omega,b} - z\right)^{-1}(\mathbf{x};\mathbf{y}) \text{ is an "almost inverse" for the magnetically perturbed edge operator } \left(H^E_{\omega,b+\epsilon} - z\right):$

$$\left(H_{\omega,b+\epsilon}^E - z\right)S_{\omega,\epsilon,z}^E = 1 + T_{\omega,\epsilon,z}^E$$

 \Rightarrow Explicit resolvent expansion in ϵ as $\epsilon \rightarrow 0$.

(ロ) (部) (E) (E) (E)

Step 2. The magnetic derivative of the edge pressure has a thermodynamic limit:

$$\lim_{L\to\infty}\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b) = \lim_{L\to\infty}\mathbb{E}\left(\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b)\right) = \frac{\mathrm{d}p_{\mu,T}(b)}{\mathrm{d}b} \quad \text{ for a.e. } \omega\in\Theta.$$

 \rightarrow Magnetic derivative and thermodynamic limit commute!

Step 3. The limit of the magnetic derivative of the edge pressure is an edge current :

$$\lim_{L \to \infty} -\mathbb{E}\left(\int_0^1 \mathrm{d}x_1 \int_0^L \mathrm{d}x_2 \ g\left(\frac{x_2}{L}\right) \ \left\{\mathrm{i}[H^E_{\boldsymbol{\cdot},b}, X_1]F'(H^E_{\boldsymbol{\cdot},b})\right\}(x_1, x_2; x_1, x_2)\right)$$

\rightarrow Exploit Step 2.

 \rightarrow Previous trace class estimates + vanishing of the equilibrium current allows to prove that the limit is independent from g.

・ロト ・ 同ト ・ ヨト ・ ヨト

Step 2. The magnetic derivative of the edge pressure has a thermodynamic limit:

$$\lim_{L\to\infty}\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b) = \lim_{L\to\infty}\mathbb{E}\left(\frac{\mathrm{d}P^{(L,\omega)}_{\mu,T}(b)}{\mathrm{d}b}(b)\right) = \frac{\mathrm{d}p_{\mu,T}(b)}{\mathrm{d}b} \quad \text{ for a.e. } \omega\in\Theta.$$

 \rightarrow Magnetic derivative and thermodynamic limit commute!

Step 3. The limit of the magnetic derivative of the edge pressure is an edge current :

$$\lim_{L \to \infty} -\mathbb{E}\left(\int_0^1 \mathrm{d}x_1 \int_0^L \mathrm{d}x_2 \ g\left(\frac{x_2}{L}\right) \left\{\mathrm{i}[H^E_{\boldsymbol{\cdot},b}, X_1]F'(H^E_{\boldsymbol{\cdot},b})\right\}(x_1, x_2; x_1, x_2)\right)$$

 \rightarrow Exploit Step 2.

 \rightarrow Previous trace class estimates + vanishing of the equilibrium current allows to prove that the limit is independent from *g*.

Massimo Moscolari (Tübingen)

・ロト ・ 同ト ・ ヨト ・ ヨト

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$. open questions:
- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$. Open questions:
- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$.

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$.

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

・ロン ・四 ・ ・ ヨン・

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$.

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

・ロン ・四 ・ ・ ヨン・

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$.

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$.

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

イロト イヨト イヨト イヨト

- Bulk-edge correspondence in the form $m = I^E$ at every temperature.
- Usual bulk-edge correspondence for μ in a gap and limit $\searrow T = 0$.
- Bulk-edge correspondence for the Landau Hamiltonian at $T \ge 0$.

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case (see Elgart-Graf-Schenker '05)? Limit to zero temperature in the metallic case?
- Extension to Dirac operators (Work in progress with H. Cornean and K. Sørensen).
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

イロト イヨト イヨト イヨト

Open questions:

- General splitting of the magnetization and bulk-edge correspondence.
- What about higher order derivatives? Is there a bulk-edge correspondence for the bulk magnetic susceptibility ?
- Limit to zero temperature in the mobility gap case? Limit to zero temperature in the metallic case?
- Extension to Dirac operators.
- Interacting case? Work in progress with J. Lampart, S. Teufel, T. Wessel.

Thank you for your attention!

Cornean H.D., M. M., Teufel, S.: General bulk-edge correspondence at positive temperature. ArXiv: 2107.13456 (2021).

M.M, B. B. Støttrup: Regularity properties of bulk and edge current densities at positive temperature . ArXiv: 2201.08803 (2022).

Massimo Moscolari (Tübingen)

Massimo Moscolari (Tübingen)

Massimo Moscolari (Tübingen)

Let $V_{\omega} = 0 \rightarrow$ The Hamiltonian H_{b_0} commutes with magnetic translation (rationality condition on the magnetic field).

 \rightarrow the operator i $[H_{b_0}^E, X_1] F'(H_{b_0}^E)$ is \mathbb{Z} -periodic in the x_1 -direction up to a Bloch-Floquet-Zak transform it is unitarily equivalent to $\int_{[-\pi,\pi]}^{\oplus} dk_1 h^E(k_1)$, where the fiber operator

$$h^{E}(k_{1}) = \frac{1}{2}(-\mathrm{i}\partial_{x_{1}} - \mathcal{A}_{1}(x_{1}, x_{2}) + b_{0}x_{2} + k_{1})^{2} + \frac{1}{2}(-\mathrm{i}\partial_{x_{2}} - \mathcal{A}_{2}(x_{1}, x_{2}))^{2} + V(x_{1}, x_{2})$$

is densely defined in $L^2(\mathcal{S}_{\infty})$ with periodic boundary conditions on the lateral lines $x_1 \in \{0, 1\}$ restricted to E, and with a Dirichlet boundary condition at the bottom $x_2 = 0$.

The bulk operator H_{b_0} can be written in similar manner, but its fiber $h(k_1)$ will be defined in $L^2([0,1] \times \mathbb{R})$ with periodic boundary conditions on the infinite lines $x_1 \in \{0,1\}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- $h(k_1)$ does not have spectrum inside the gap $[e_-, e_+]$.
- $(h^E(k_1) z)^{-1} \chi_{\infty}(h(k_1) z)^{-1}\chi_{\infty}$ is compact for any z with $\text{Im}(z) \neq 0$, thus the spectral projection of $h^E(k_1)$ inside $[e_-, e_+]$ is compact, hence $h^E(k_1)$ can only have finitely many discrete eigenvalues which can be inside $[e_-, e_+]$.
- These eigenvalues are the so-called *edge states*, corresponding to eigenfunctions exponentially localized near the boundary $x_2 = 0$. According to Rellich's theorem, each edge state eigenvalue $\lambda(k_1)$ can be analytically followed as a function of k_1 as long as its value belongs to $[e_-, e_+]$.

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト … 臣

Lemma

Let $N < \infty$ be the total number of edge state eigenvalues which can enter the interval $[e_-, e_+]$. Without loss of generality we may assume that no such eigenvalue starts or ends at e_{\pm} , i.e. $\lambda_n(\pm \pi) \notin \{e_-, e_+\}$. Then:

$$-2\pi \operatorname{Tr} \left\{ \chi_{\infty} i \left[H^{E}, X_{1} \right] F_{0}'(H^{E}) \right\} = \sum_{n=1}^{N} \int_{-\pi}^{\pi} dk_{1} F_{0}'(\lambda_{n}(k_{1})) \lambda_{n}'(k_{1})$$
$$= \sum_{n=1}^{N} \{ F_{0}(\lambda_{n}(-\pi)) - F_{0}(\lambda_{n}(\pi)) \},$$

and the right-hand side is an integer.