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Geometric quantization and the quantum Hall effect

As is well known, 1-particle states for the QHE on a 2-dimensional surface
S correspond to the quantum states of the holomorphic quantization of the
surface with symplectic form given by the magnetic field

ω = B.

Thus, the physical configuration space S becomes an effective phase space
(S, ω).

We will consider the case where ω is also the Kähler form, so that the Rie-
mannian metric on S is given by

γ(·, ·) = ω(·, J ·)
where J is the complex structure.

In this talk, I will describe how Hamiltonian flows in imaginary time it generate
natural families of Kähler structures (S, ω, Jt, γt), and how 1-particle states
evolve along this family of geometries of S. This will be applied to Laughlin
states for the FQHE on the sphere S2.



Evolution of quantum states in geometric quantization

Let (M,ω) be a symplectic manifold, dimM = 2n.

Morally, the process of “quantization” should assign to it a Hilbert space H,
such that functions f ∈ C∞(M) are promoted to operators f̂ acting on H with

{̂f, g}P.B. =
i

~
[f̂ , ĝ], f, g ∈ C∞(M),

along with a few other natural conditions including the irreducibility of this
representation H. It is known that this problem has no solution if one imposes
all these requirements.

Geometric quantization is a rich framework where one can study mathematical
issues related to the problem of quantization.

Assume that there exists L → M with Hermitian structure h and compatible
connection ∇, with curvature F∇ = −iω. One calls (M,L, h,∇) the prequan-
tization data.



The prequantum Hilbert space ΓL2(M,L) is too big for irreduciblity. Choose
a polarization

P ⊂ TM ⊗ C
that is, a Lagrangian (rank(P ) = n, ω|P = 0), involutive distribution in TM⊗C.

The Hilbert space of quantum states is then (with some supplementary L2

conditions)

HP = {s ∈ Γ(M,L) : ∇P̄s = 0}.

Example 1: M = T ∗X 3 (x, p) and P is the Schrödinger polarization then
HP = L2(X) with quantum sates satisfying ∇ ∂

∂p

s = 0.

Example 2: M is Kähler and P = T (1,0)M . Then HP = H0(M,L) and quantum
states are holomorphic sections, ∇ ∂

∂z̄

s = 0. This is the most relevant example

for the QHE.

It turns out that quantization is better behaved along families if one includes
the half-form correction by taking L⊗K

1

2 , where K is the canonical bundle. For
a surface, a local section of K

1

2 looks like
√
dz, where z is a local holomorphic

coordinate. Including half-forms corresponds to taking spin 1
2

particles.



Kähler quantization is usually much better behaved that quantization in real
polarizations. When P = P̄ is a real polarization, sections of L covariantly
constant along P must be supported on leaves of P where ∇ has trivial
holonomy. These are the Bohr-Sommerfeld leaves (BS leaves).

If M is compact only a finite number of leaves of P will be BS. Thus, sections
which are covariantly constant along P will be distributional in nature.

In several interesting cases, the families of Kähler structures (M,ω; Jt, gt) ap-
proach interesting real polarizations as t → +∞ and one can describe how
holomorphic quantum states localize over BS fibers of the limit polarization.

In the case of the sphere, we will look at such families where the sphere
becomes more and more cigar shaped. BS cycles will be specific parallels.



One of the major problems in geometric quantization is the dependence of
HP on the choice of P . In some cases, if J is a nice space of Kähler complex
structures for (X,ω) one gets a Hilbert bundle

H → J ,
with fiber HP over P ∈ J . Of course, one would like to find a natural unitary
(projectively) flat connection on H providing for a unitary identification of
quantizations for different polarizations through parallel transport.

A well-known example, still an open problem, is the matter of the unitarity
of the KZ/Hitchin connection on the bundle of conformal blocks for Chern-
Simons theory with non-abelian gauge groups.

If J has some (partial) compactification J̄ , where ∂J̄ includes some mixed and
real polarizations, one would like to have continuous interpolation between
quantum states for holomorphic and real polarizations on the boundary.



Sometimes the holomorphic quantum states can be generated by a concrete
analytical gadget - called a generalized coherent state transform (CST) -
applied to quantum states in a real polarization P0 ∈ ∂J̄ . The unitarity (or
lack of) of this operator then decides the equivalence of quantizations in
different polarizations P, P ′ ∈ J̄ .

Examples include complex Lie groups, complex tori and classical theta func-
tions, non-abelian theta functions on an elliptic curve, symplectic toric mani-
folds like S2. The case of classical theta functions corresponds to the unitarity
of the KZ connection for Chern-Simons theory with an abelian gauge group
on S × S1.

The CST analytical gadget is intimately related to Hamiltonian dynamics in
imaginary time.



The space of Kähler metrics

Let (M,ω, J, γ) be a compact Kähler manifold. Locally, on a sufficiently small
open set U ⊂ M , the Kähler form can be written in terms of a (non-unique)
Kähler potential

ω = i∂∂̄κ, κ ∈ C∞(U,R).

From the ∂∂̄-lemma, the space of Kähler forms in the class [ω] ∈ H1,1(M) is

H = {φ ∈ C∞(M) : ωφ = ω + i∂∂̄φ > 0},
that is, two Kähler forms in [ω] differ by a global Kähler potential.

The space of Kähler metrics in the class [ω] is then given by H/R.



The Mabuchi metric on H is

||δφ||2φ =

∫
M

(δφ)2dµφ, dµφ =
1

n!
ωnφ.

The expression for the curvature of H, as well as other arguments, show that
(Donaldson, Semmes), morally,

H ∼= HamC(M,ω)/Ham(M,ω),

an infinite-dimensional non-compact symmetric space for the “group” of com-
plexified symplectomorphisms of (M,ω). (This group does not really exist but
this is a useful analogy.) This led Donaldson to suggest that geodesics on
H should be generated by “complexified” Hamiltonian flows. Below we will
make this suggestion concrete and (more) explicit.

Geodesics on H are described by the non-linear equation

φ̈ =
1

2
||∇φ̇||2φ.

The (very hard to obtain) analytical and geometrical properties of these geo-
desics play an important role in recent great developments in Kähler geome-
try.



Construction of Mabuchi geodesics

Let (M,ω, J, γ) be a compact Kähler manifold and suppose that all the struc-
tures (symplectic form ω, complex structure J, Riemannian metric γ) are real
analytic.

If Xh is a real analytic Hamiltonian vector field, h ∈ Cω(M), its time t flow,
ϕt : M → M , will be real analytic in t. Power series (in one variable) have a
radius of convergence in the complex plane. This is defined on small open
sets on M (Gröbner). Since M is compact there exists some T > 0 such that
we can analytically continue to complex time τ for |τ | < T .

Let zj be local holomorphic coordinates on M and consider their (complex)
time τ flow

zjτ = eτXhzj =
∞∑
k=0

τk

k!
Xk
h(zj).

Whenever it is well defined, the operator exp(τXh) acts as an automorphism
of the algebra of (real analytic) functions:

eτXh(fg) = eτXh(f)eτXh(g).



Therefore, on overlapping holomorphic coordinate charts the operator exp(τXh)
preserves the (holomorphic) coordinate transformations defining M as a com-
plex manifold.

Theorem: (Mourão-N ’15) There exists T > 0 such that for |τ | < T there
exists a global complex structure Jτ on M , defined locally by the coordinates
zjτ , and a unique biholomorphism

ϕτ : (M,Jτ)→ (M,J).

We get two equivalent Kähler structures (ie nothing new)

(M,ω, J, γ) ∼= (M,ϕ∗τω, Jτ , ϕ
∗
τγτ).

Since we are taking an Hamiltonian vector field, however, Jτ is still compatible
with the original symplectic form ω and we get a new Kähler structure. (Note
that {ziτ , z

j
τ}PB = 0, since Xh is Hamiltonian.)



Theorem: (Mourão-N ’15) For |τ | < T ,

i) (M,ω, Jτ) is a Kähler manifold (w/ a new Riemannian metric γτ)

ii) There is a reasonably explicit formula for the Kähler potential κτ .

Sometimes, these results hold even if M is not compact and for T = +∞.

Theorem: (Mourão-N ’15) The family of Kähler metrics γτ is a geodesic
family with respect to the Mabuchi metric.



Example: The symplectic plane

Consider the symplectic plane (R2, ω = dx∧ dp) and the Hamiltonian function
h = 1

2
p2, with Hamiltonian vector field Xh = p ∂x. We then have in imaginary

time it, t > 0,

zt = eitXhx = x+ itp.

This defines an holomorphic coordinate on the plane for a complex sructure
Jt. The Riemannian metric is

γt = t−1dx2 + tdp2.

Note that, in this case, we can start with the real coordinate x at t = 0 and
for t > 0 we obtain flat Kähler structures on the plane, with the standard
Kähler structure corresponding to t = 1.

The quantization in the Schrödinger polarization, at t = 0, is just the usual

L2(R, dx)⊗
√
dx.

At imaginary time it, t > 0 we get, with ∇ = d + ip dx, that quantum states
are of the form, with f holomorphic,

f(zt)e
− t

2
p2 ⊗

√
dzt = f(zt)e

(zt−z̄t)2

8t ⊗
√
dzt,



.

These quantizations of the symplectic plane are related by the time t coherent
state, or Segal-Bargmann, transform,

Ct : HP0
→ HPt, t > 0,

which can be described as follows. Let

ĥpQ = i∇Xh
+ h = ip∂x −

1

2
p2

be the Kostant-Souriau prequantum operator for h. Note that

p̂pQ = i∂x.

We define the quantum operator associacted to h = 1
2
p2 to be

ĥQ =
1

2
p̂2
pQ = −∆.



We then have that the CST for imaginary time it, t > 0, can be written as

Ct = etĥpQ ◦ e−tĥQ

The first term, on the left with prequantum operator, plays the role of analytic
continuation from x to zt, and inserts a factor of exp(−1

2
κ), where κ is the

Kähler potential for (ω, Jt). The term on the right is the heat kernel which
is a contraction operator. Ct is the unique (up to phase) unitary operator
intertwining ?-representations of the Heisenberg group on HP0

and on HPt.
Note that while x acts by multiplication on HP0

, one has that it is zt that acts
by multiplication on HPt.

This structure for the evolution of quantum states, under deformations of
geometry induced by Hamiltonian flows in imaginary time, vastly generalizes:
to complex Lie groups, to classical theta functions on abelian varieties, to
non-abelian theta functions at genus one and to symplectic toric manifolds.
In general, however, even for the symplectic plane, as soon as h has non-
quadratic terms (convexity of h is crucial) the CST is no longer unitary and
one does not obtain equivalent quantizations. For symplectic toric manifolds,
as the case of the sphere that we will examine next, Ct is not unitary even
for quadratic h but it is asymptotically unitary as t→ +∞.



Quantization of S2 on axially symmetric Kähler structures

Let us take the usual S1 action on S2, by rotation around the vertical axis,
with symplectic form such that∫

S2

ω = 2πN,N ∈ Z.

Including the half-form correction, the moment polytope is P = [−1
2
, N − 1

2
]

and in action-angle coordinates, valid on an open dense subset P̌ × S1,

ω = dx ∧ dθ,
where P̌ is the interior of P . We will consider Mabuchi geodesic families of S1-
invariant Kähler structures described (Guillemin-Abreu) symplectic potentials
of the form, for s > 0,

gs =
1

2

(
x+

1

2

)
log

(
x+

1

2

)
+

1

2

(
N −

1

2
− x

)
log

(
N −

1

2
− x

)
+
s

2
x2.

As we will describe, at s = 0 this corresponds to the standard Kähler structure
on the round sphere and this is a family of Kähler structures corresponding



to Hamiltonian evolution in imaginary time is, s > 0, for h = 1
2
x2 where as

s→ +∞, S2 becomes more and more cigar shaped,

γs = g
′′

sdx
2 +

1

g′′s
dθ2.

The holomorphic coordinate on P̌ × S1 is then

ws = ezs = e
∂gs

∂x
+iθ =

(
x− 1

2

N − 1
2
− x

)1

2

esx+iθ.

The connection on the prequantum bundle is ∇ = d− ixdθ and the half-form
corrected sections, which give the 1-particle states for the QHE for the Kähler
structure at imaginary time is, s > 0, for spin 1

2
particles, are of the form

σms = wms e
−κs1P ⊗

√
dzs, m = 0, · · · , N − 1,

where 1P is an s-independent unitary section and the Kähler potential at time
is is κs = κ0 + s

2
x2 (this is the Legendre transform of gs).



Note that 1-particle states are labelled by the integral points of P . These
correspond to the parallels of S2 which are Bohr-Sommerfeld.

The prequantum and quantum operators associated to h = x2

2
read

ĥpQ = −ix
∂

∂θ
−
x2

2
, ĥQ =

1

2
x2
pQ = −

1

2

∂2

∂θ2
.

One obtains that prequantum evolution corresponds to analytic continuation
and to the correction of the Kähler potential,

esĥpQσm0 = σms .

But, as we have seen the full generalized CST is

Cs = esĥpQ ◦ e−sĥQ,
where the quantum operator part now affects the monomial section σm0 with

a factor of e−
s

2
m2

.



From results of Baier-Florentino-Kirwin-Mourão-N., we know that, as s →
+∞, the holomorphic polarization associated to Js converges to the toric
polarization generated by ∂

∂θ
and that, moreover,

lim
s→+∞

Csσ
m
0 ∼ δm

where δm is a distributional section supported on the BS cycle x = m. Cs is
asymptotically unitary as s→ +∞, thanks to the contribution of the quantum
operator.

Moreover, we see that the holomorphic monomial sections are eigenvectors
of the quantum operator but with m dependent eigenvalue. Thus, acting
with the CST in the Laughlin state will give rise to a different evolution than
just the evolution corresponding to the analytic continuation given by the
prequantum operator.



Application to the QHE on S2

The evolution of 1-particle states for the quantization of S2 along the geodesic
family of toric invariant Kähler structures described above, via the generalized
CST, can now be applied to the fully filled LLL for the integer quantum Hall
effect and to the Laughlin states for the FQHE.



Integer QHE on S2

The LLL for the IQHE for the round sphere (s = 0) is described by the totally
antisymmetric product of 1-particle states

ΨIQHE
0 =

∑
τ∈SN

sgn(τ)στ1

0 ((w0)1)⊗ · · · ⊗ στN0 ((w0)N),

which is a section of L�N = π∗1L ⊗ · · · ⊗ π∗NL → S2 × · · · × S2 where πj :
S2 × · · · × S2 → S2 is the projection onto the jth factor, j = 1, . . . N.

The generalized CST acts on this state in a natural way,

CsΨ
IQHE
0 = e−

s

2

∑N−1

m=0
m2
∑
τ∈SN

sgn(τ)στ1

s ((ws)1)⊗ · · · ⊗ στNs ((ws)N),

and the overall factor can be absorbed in the normalization of the LLL state.

It is interesting to note that for very large deformations s → +∞ there will
be localization along the BS cycles.



Fractional QHE on S2

For the fractional QHE with filling fraction ν = Ne/N = 1/k, with odd k, we
have the known Laughlin state for the round sphere (s = 0),

ΨLaughlin = Π1≤i<j≤Ne
((w0)i − (w0)j)

k e
−
∑Ne

j=0
κ0((w0)j).

This state is an antisymmetric section of L�Ne and (including the half-form
correction) it is convenient to expand it in terms of an eigenbasis of the
quantum operator given by Slater determinants

ψλs = σλ1

s ∧ · · · ∧ σλNes ,

where λ = (λ1, . . . , λNe
) is such that 0 ≤ λ1 < · · · < λNe

≤ N − 1.

We have

Csψ
λ
0 = e

− s

2

∑Ne

j=1
λ2
jψλs

Dunne (’93) has given a decomposition of the Laughlin state in terms of this
basis

Ψs=0
Laughlin =

∑
λ

aλ(k)ψλ0.



We then obtain the evolution of the Laughlin state under the generalized
CST

CsΨ
s=0
Laughlin =

∑
λ

aλ(k)e
− s

2

∑Ne

j=1
λ2
jψλs ,

where different Slater terms evolve differently due to the contribution of the
quantum operator. Of course, this will also have an effect on the the particle
density

ρs(x) =
〈CsΨs=0

Laughlin,
∑Ne

j=1 δ(x− xj)CsΨs=0
Laughlin〉

||CsΨs=0
Laughlin||2

.

If the quantum operator is not taken into account, as s→ +∞ one gets a do-
minant contribution from the Slater with largest |λ|2. Including the quantum
operator, however, gives a particle density which is more evenly distributed
among BS cycles.

Note that taking N → +∞, ie P = [−1
2
,+∞), in the above describes rota-

tionally invariant non-flat Kähler structures on the plane generated by the
Hamiltonian flow in imaginary time of h = 1

2
(x2

1 + x2
2).



Illustrative examples for k = 3

Density profiles of the evolved states of 3 particles on the sphere with s = 0,
s = 5, s = 10, s = 50 and s = 100, for h = 1

2
x2:
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Density profiles of states of 3 particles on the sphere evolved only with pre-
quantum operator for s = 0, s = 5, s = 10, s = 50 and s = 100, for h = 1

2
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Final conclusions

Hamiltonian flows in imaginary time give a very useful tool for the study
of the evolution of 1-particle states for the QHE under the corresponding
deformations of geometry.

In geometric quantization, the natural law of evolution of quantum states un-
der these deformations of the geometry is given by a generarized CST. Besides
the prequantum evolution, which corresponds to analytic continuation, there
is also evolution under a quantum operator which affects different monomial
1-particle states on S2 in different ways. Thus, the CST predicts an evolution
of the Laughlin state which is not just given by analytic continuation.

For extremely deformed axially symmetric geometries on S2, where the sphere
becomes more and more cigar shaped, 1-particle states concentrate along BS
cycles and this affects the particle density for the Laughlin state.



Note that for the QHE for flat geometries on the torus, labelled by a modular
parameter τ = τ1 + iτ2, τ2 > 0, the CST evolution gives results which are
identical to the known results for the Laughlin states on flat tori: in this case,
if one includes the half-form correction (that is, for spin 1

2
particles), the CST

evolution just maps - unitarily - between theta functions for different τ ′s. In
this case, the CST is the (unique up to phase) unitary intertwiner between the
(unique up to isomorphism) irreducible representation of the finite Heisenberg
group. This is not true if the quantum operator is not included.

THANK YOU.


