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Motivations




Entanglement and symmetries

|W) many-body quantum state and a
bipartition A+ B

e U(1) charge Q= @A + QB

° QW) =g V)

@ Reduced density matrix pa = Trg (V) (V]),
[PA, QA} =0

o Block diagonal structure: pa = D, Pqra(q),
Tra(pa(q)) =1

@ pg: Full counting statistics (FCS) for the charge, an experimentally
relevant quantity.

@ pa(q): provides a better insight on the entanglement structure of |V).



Equipartition of entanglement

Defining a Von Neumann entanglement entropy per g sector

S1 = —Tra(palogpa) =—Y pglogpg+ Y peSi(q)
q q

o — Zq Pq log pg: Shannon entropy for the FCS.

o S(q) = 1L log (Trap}(q)): Symmetry resolved Renyi entropy.

Equipartition of entanglement entropy (J. Xavier, F. Alcaraz and G. Sierra PRB
(2018)):

Sn(q) does not depend on q (in the thermo. limit, A+ B — oo, A — o),
51(q) = S1+ >, pqlog pq

Valid for critical 1d systems, integrable models, topological phases,...



Integer quantum Hall effect




Quantum Hall effect

Landau levels (spinless case)

@ Cyclotron frequency : we = %.
n=3 oI . _ hn _ N
. '__2_ ______ I//W o Filling f;?ctor. V=1eB = Ng
= —————— I e Partial filling + interaction — FQHE
_ huwe
e Ifw o Lowest Landau level (v < 1) :
e —— ‘ zMexp (—|2]?/(413))

@ N-body wave function :
V= P(z,...,zy) exp(— > \z,-]z/(4/,23))
o Landau gauge and cylinder : ring-like
orbital centered around kmlé, ki
quantized.




Evaluating the symmetry-resolved EE

Generating function: Z,(a) = Tra <ei°‘@ApA).
Zo(q) = [T §eeiaZ,( ZTTA PaPA(a))

e FCS: pg = Zi(q)

o Sym-res EE: $1(9) = 115 108 (£15). $1(0) =~ 2

n=1

For free fermions in Slater |Q2): evaluation from the correlation matrix
C(r,r') = (QUT(F)V(r) Q). If Ca is its restriction to A, with eigenvalues
Am:

Zo(a) = H <)\nmeioc(1—>\m) +(1- )\m)ne—ia/\m>

meZ



Case of the filled LLL

\ @ An extra knob: ® flux along the
i " A
(i) ‘ @ A region semi-infinite cylinder

>, (x <0).

Wavefunction in the LLL:

]_ ik —(x—k 2 27T
xy) = —t_ekmretk2 ke Tz
Ohn(%,) — (7 + 0)

® A\m = 3 (1 — erf(km)), overlap of orbital m on A (the overlap matrix
have the same non-zero eigenvalues than Cp).

@ Defining (: QA 1) properly: % — & (up to gaussian corrrections). The
orbital at m = 0 is cut in the middle at x = 0 (for ® = 0).



FCS and Symmetry-resolved EE

For the IQHE, both can be derived exactly

2

e 272 5 L

X —, 0°=——=
Pa V2mo? (27r)3/2

9> q*
Sn(q) ~ Sp— % log L+ A, — B"T + C,,F
! !
A, =oan+ %, B,=08,+ B—L”, C,, = constant

At large L and small g deviations, equipartition of EE:
Sn(g) ~ S, — % log L + aupy
log L correction compared to the EE (S, = ¢,L —~, v = 0 for filled LLL).



Numerical results: FCS

(2) Dq (b) approx,/p,
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e L =25, blue dots ® =0, red dots ® = 1/2 (& turns ¢ into a
continuous variable).

@ Gaussian approximation perfectly captures the FCS for small
fluctuations (~ /L).



Numerical results: Symmetry-resolved EE

Von Neumann EE Renyi-2 EE
S1(g) (4)
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e L =10,30,50 (from bottom to top), ® =0 and ¢ =1/2.

@ Very good agreement with the analytical expression (continuous blue
line, no fit needed).



Fractional quantum Hall effect




The Laughlin wave function

A (very) good approximation of the ground state at v = %

|z
WL(ZL '--ZN) = H(Z,' — Zj)pe_ 2 412

i<j

Excitations with fractional charge % and fractional statistics

Edge excitations () E=1 @E=2
@ A chiral U(1) boson with a % 3

. . . (@Q)E=0
dispersion relation E ~ %Tvn

@ The degeneracy of each energy
level is given by the sequence
1,1,2,3,....

(©E=1 (e)E=2




Li-Haldane conjecture

o Rewriting pa = e Mt where H,y is the entanglement Hamiltonian.

@ For topological phases, Hep is the edge/surface mode hamiltonian
Hedge-

e For FQH states captured by a CFT: Heqge = %TV (Lo — 2—C4) Lo zero
mode of the stress tensor and ¢ central charge.

e For Laughlin state v =1/p: c =1, Lo = %ag + > 50 @—nan.

@ a, bosonic mode of the U(1) chiral current, ag = ﬁ@A.

2
e 252 0
2 _ L _9

Pg X 53 0% = spw q-p—i—Z

6 =0,...,p— 1is the topological sector.



Corrections to the Li-Haldane conjecture

@ The actual spectrum of p4a is not
linear (at finite L).

120+

Pseudo-energy

80+ BL=7
m.=15 @ Corrections to the CFT spectrum
or L= (Dubail et al., PRB (2012)) by
adding irrelevant local
0 .
perturbations.

@ V; zero mode of ®; local fields with dimension A; > 2.

@ gj are not universal and should be fine-tuned but can be computed
exactly for the filled LLL (p = 1).

@ p > 1 leads to the same expression for S,(q) but A,, B, and C, should
be fitted.



Matrix Product States for FQH states

|w> — Z <al_‘ A[mll._'A[mNorb] |O[R> ‘m17 ceey mNorb> 60
{mi} w40

Pmax (MPS)

{Alm1} is a set of matrices + (o, ;) boundary oL =%
conditions

m]

The AL
@ [m] is the physical index (for FQH, the orbital occupation)

matrices have two types of indices

o (a, ) are the auxiliary space indices 1, ..., x.

@ Known exactly for the Laughlin states, Zaletel and Mong, PRB (2012)
@ The auxiliary space is the CFT Hilbert space of the edge mode..

@ Truncated CFT: fix a maximum conformal dimension P,,ax.
°

In general  is of the order of expSa (Sa is the entanglement entropy).



Numerical results: F

We focus on the bosonic Laughlin state v = %
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Here v = 0.144(1).



Numerical results: Entanglement Entropies

Von Neumann EE
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Technical challenges:

log(L)

1
2

SQ((D — S5+

Renyi-2 EE

-8 -6 —4 -2 0 2 4 6 8
q

o Innitely long cylinder but limited in perimeter L (require large Ppax

and thus matrices).

e Focusing on subdominant terms is usually hard (more prone to finite

size effects).



Numerical results: corrections

0.45 W
T 0aft ' 1 . .
= e @ From Li-Haldane+perturbations:
T 035 b3 4, — |
0-3’% f : : ‘Azi" °A”:a"+%
9 E(b) - 7
o 82 3 E ° B, = 6” + BTN
S ‘
S0TET R i o C, = constant
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05 [ | e Fairly good agreement for A, and
SE@ ‘ ] R B,.
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FQH Laughlin states do satisfy the equipartition of EE.



Conclusion

Symmetry-resolved EE provides a finer perspective on entanglement.

Quantum Hall effect is a nice playground to test new concept:
analytical results for IQHE and analytical /numerical results for FQHE.
Both IQHE and the FQH Laughlin states satisfy the equipartition of
entanglement entropy.

@ Outlook:

o Non-abelian states (Moore-Read) and equipartition of EE?
e Any violation of EE equipartition in QHE?



