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Plan of the talk

e What is a semimetal?

e What are the invariants in a semimetal?

e What is the spectral localizer?

e Semiclassical Weyl/Dirac point count

e Numerical illustration

e Normal form: spectral localizer for a Weyl/Dirac Hamiltonian
¢ Topological charges and Fermion doubling theorem

e Generalized Callias index theorem

» Weak invariants via weak spectral localizer

» Application: weak winding numbers imply flat band of edge states
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Ideal semimetals
periodic tight-binding H on ¢2(Z9,CN) with pseudogap at Er = 0
After discrete Fourier transform k e TY — Hy = (Hy)* € CN*N
Fermi surface Z(H) = {k e T? : dim(Ker(Hx)) > 1} = {k{,... Kk}
For each k* € Z(H) locally k € Bs(k*) — Wy € U(N) such that
HP 0
WH W = k
KTk ( 0 HA+ Hﬁ)
with invertible H?, remainder |Hf| < C|k — k*|?, and
linear term H,? given by a direct sum of g* summands of the form
d
w/D
Hk / = Z S](k — k*)]r]
j=1
with slopes sy,...,84 € R\{0} and I'y, ..., T4 irrep of Clifford alg. C4
Terminology for d odd/even: Weyl/Dirac point of multiplicity g*
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Example of 2d semimetal: graphene
On honeycomb lattice = decorated triangular lattice, so on (?(Z?) ® C2
H — 0 S+ S;k So + 1
S +855 +1 0

where Sy, S, shifts on ¢2(Z?). Clearly chiral c3Hos = —H. Fourier:

H ~ ®dk 0 e + gltke=k) 4 4
>~ - e ki 4 g-ilke—ki) | { 0

Dirac points k;. = ((3131)”,0) DOS vanishes at E = 0 (pseudogap)
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Instability of semimetals

In d = 2, Dirac points are stable only if chiral symmetry preserved

In d = 3, Weyl points are stable and generic (Wigner-von Neumann)
But move energetically, unless some symmetry fixes them at E =0
Points of "topological phase transitions” are often semimetals

There are variants: e.g. line node semimetals

Disordered semimetal: random (potential) perturbation of the above
Open: in d = 2 pseudogap stable for chiral random perturbation?
Invariants (that will be addressed here):

e number of Weyl/Dirac points, possibly weighted by topological charge

e weak invariants in direction j = 1,...,d (like winding # in d > 1)
1 Iy 0 A
Ch{j}(A) = ZETI‘<0|A Z[A, )(j]|0> s = A* O
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Spectral localizer (strong even pairings in even d)
Hamiltonian H = H* on H and P = x(H < 0) with gap g = |H~"|~"
Dirac operator D = Y}, v X; on H@H is odd w.rt. T = 74,1 = (§_9)
Thus D = —TDr = ( §,.3) and Dirac phase F = D'|D/| "

[H, D’] bounded = Chy(P) = Ind(PFP + 1 — P) index theorem

_ /
L, = HowDY _  jer+ wD . k>0
k(D)* H

Theorem (with Loring 2018)

L, , restriction (Dirichlet) to finite-dimensional range of x(|D| < p) with
3

g 29 _ p

HD|| <€ ——
IH.0N < s

Then L, , has gap 3 and
Chy(P) = }Sig(Ls,) € Z
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Schematic representation

_ /
Loy = [ A D) o
k(D)* XH
Spectrum for A = 0 symmetric and with space quanta «
PRLAEN
l l l l l l l l l l N
[ 1 1 1 1 1 1 1 1 1 > 0(Lx(0))
0
Spectrum for A\ = 1: less regular, central gap open and asymmetry
y \g
L l l a1
1 1 1 11> o(Ls(1))
0

Spectral asymmetry determined by low-lying spectrum (finite volume!)

Invariants of disordered semimetals via the spectral localizer 7/19



Spectrum and signature of localizer
(Dual) Dirac D = 39 , ~,X; on (2(29,CN)  locality: |[D', H]| < o
Spectral localizer (placing Hamiltonian in a Dirac trap):

Lo ( “H w)
k(D)* H

No functional calculus, just place H and D in 2 x 2! Typical result:

DOS of Spectral Localizer

80

60

a0l

20

0

p=6,rk=0.1,etc. half-signature easy to compute
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Spectral localizer (strong odd pairings in odd d)
For chiral Hamiltonian with gap g = |[H~"||~"

H - 0 A
A* 0
Odd Chern # Chgy(P) are (higher) winding numbers. Index theorem

Chy(P) = Ind(EUE +1 — E)
where E = x(D > 0) and U = A|A|~". Odd spectral localizer:

L. = kD A
A* —kD

Theorem (with Loring 2017)
For x and p as above, L, , is invertible and
Chg(P) = 3 Sig(Ls,)




Motivation for Weyl/Dirac point count

m e R — H(m) path of periodic Hamiltonians on ¢?(z9, CN)
Focus on d even (for d odd: chiral symmetry)

Suppose "topological transition” through semimetal at m=0
H(m) gapped at Ef = 0 for |m| € (0, mg), but no gap for m =0

Chg(P(m)) = 3 Sig(Ly,(m))
Transfer of topological charge given by

Chg(P(m)) — Chg(P(—m)) = } Sig(Ly,(m)) — 3 Sig(Ly,p(—m))
= S SF(m' € [-m,m] — L.(m))

Guess: eigenvalue crossings precisely at m = 0
Not covered by earlier results (which require gaps)!
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Semiclassical Weyl/Dirac point count

Theorem

H ideal semimetal with | singular points at Fermi level
Multiplicities are q5, . . ., qf
. —-H D
Use even localizer L,, = D H for odd d, and odd one for even d
K

Then exist constants ¢ and C such that

|
Z X(ILal < cr3)) = Tr(x(|Ls| < C

=

/-c))

Two facts:

. 2 2
e spectrum in [—ck3, ck3 | consists of Z, 1 qi eigenvalues

e no further spectrum in [—Cm?, Cm?]

Invariants of disordered semimetals via the spectral localizer 11/19



Numerical example: Weyl points of d = 3 system

0 S+ S%
H = Hp+ip + 0 N 3 + AHy, on 62(Z3,C2)
DOS of Spectral Localizer : i i Low—\y\[\g DOSof‘Spectral L‘ocalizer i
20+ .
150:
[ 150
100]
s 1.0+
sof 05+
ol . . . . 1 0obe . . . . .
-2 -1 0 1 2 -0.3 -0.2 -0.1 0.0 0.1 0.2 03

p=7,s0cubeofsize15,§ =06, u =12, A=0.5 k=01
Approximate kernel dimension counts number of Weyl points
Also: eigenvalues in [—e~¢/#, —g=¢/%] (tunnel effect in k-space)

N.B.: Weyl point count stable under small disordered perturbation
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Semiclassical perspective on spectral localizer
Consider Cayley transform of even spectral localizer for d odd:

ZKZC*LKCZ 0 kD —1H
kD +1H 0
As Ker(L,.) = Ker(L2) = CKer([2), approximate kernel is linked
to semiclassical Schrédinger-like operators on L2(T9, C2N):

FOLRF <HZD2 + H2 — k[ D, H] 0 )

0 k2D? + H? + ra[ D, H|
Wey! points of H lead to quadratic wells of potential H?

However +xi[D, H] shift eigenvalues by O(k)

Low-lying spectrum accessible by rough semiclassics

Technique: IMS localization a la Simon with improvements by Shubin



Local normal form: localizer of Weyl Hamiltonian
Weyl Hamiltonian HW = Z/ . §T;X on L2(R9, C?) where o' = 212!

d d
W (—HW F.;D) _ (- SasT% n3is fy,-a,->
Here ~; and I'; commute and act on C? ® C?". Hence
(e — Y4 (—r202 + $2X2) + KM 0

A 0 Sy (—K202 + 2X2) — kM
with selfadjoint matrix M = 27:1 sl
Harmonic oscillator spectrum with representation theoretic methods:

Lemma
Ker(LY) is one-dimensional and first excited state is O(y/k) J

Together with IMS this implies Theorem for odd d. Even d similar [



Topological charges (chiralities) of Weyl points
For d odd, chirality of singular point k* with small ball B (k;*)
¢} = Chy_y(HIH|™,0B.(k}))

1

Fact: ¢/ = (—1)% ]_[/‘-”:1 sgn(s; ;) determines SF at top. phase trans.

Theorem (Fermion doubling by Nielsen and Ninomiya)

/
Yo -

i=1

Fact: ¢/ determines whether kernel in upper or lower component of L.

1 0
Supposing kernels are not approximate, with J = <0 1),
Yt ~ Sig(Jlkerr,)) = Ind(kD+ iH) = Ind(kD) = 0
i=1
because index on a compact manifold T¢ has vanishing index
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Generalized Callias index theorems

Kernel actually empty, but argument gives Callias-type index theorem
C'-map x € RY > Hy = (Hy)* of selfadjoint Fredholm operators

Hy uniformly invertible for |x| > Rc

Hypothesis: zero set Z(H) = {x e R? : dim(Ker(Hy)) = 1} finite

For x* € Z(H) topological charge ¢; = Chg_¢(H|H|™", 0Bs(x}"))

Theorem
d odd and D = ~ - ¢ Dirac operator on R?. Forall k <1,
Ind(kD + iH) = Sig(Jlger)) = D, CF
X*eZ(H)

Proof: similar to Witten’s semiclassical proof of Morse inequalities
R.h.s.: multiparameter spectral flow counting Weyl points with charge
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Weak invariants in chiral semimetals

H = ( 0 '3) chiral semimetal (such as graphene)

A*

Chyy(A) = «ETr(0JA"[A,X]0) . j=1,...d
Proposition
Chyj, (A) well-defined whenever there is a pseudogap J

Define weak spectral localizer in direction j

jwi _ (5% A T R
K,p ApJ —K X/ pv/ ApJ 0
where H,; on [—p, p]? with Dirichlet bc in j and periodic bc in others
Proposition
. — 1 1 w,j —1
Chip(A) = 5,77 E5Sielby) + O™ %)
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Numerical example: weak localizer for graphene
Take H graphene Hamiltonian

Histogram of eigenvalues of Lf;",’,l forp=34and x = 0.1

DOS of Weak Spectral Localizer
140 F o o " ’ 1

120 +

100 +

oS = N WO A O O
L

Computed half-signature is 23 so Chy1;(A) ~ 53 ~ § as 2p+ 1 = 69



Bulk-boundary correspondence in semimetals
Theorem

Consider an chiral ideal semimetal Hamiltonian H = —JHJ

Given ¢ € S, restrict it to a half-space perpendicular to ¢ denoted H
Random local surface perturbations are allowed. Then

7 (J Ker(H Z & Chyjy (A
Jj=1

where T trace per surface along the boundary

Example for graphene as above, ¢ = e;. Flat band 48 ~ 2 % 69 states

DOS of Hamiltonian

20 ‘

5

o

010 005 000 005 010
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