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Plan of the talk

‚ What is a semimetal?

‚ What are the invariants in a semimetal?

‚ What is the spectral localizer?

‚ Semiclassical Weyl/Dirac point count

‚ Numerical illustration

‚ Normal form: spectral localizer for a Weyl/Dirac Hamiltonian

‚ Topological charges and Fermion doubling theorem

‚ Generalized Callias index theorem

‹ Weak invariants via weak spectral localizer

‹ Application: weak winding numbers imply flat band of edge states
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Ideal semimetals
periodic tight-binding H on `2pZd ,CNq with pseudogap at EF “ 0

After discrete Fourier transform k P Td ÞÑ Hk “ pHk q
˚ P CNˆN

Fermi surface ZpHq “ tk P Td : dimpKerpHk qq ě 1u “ tk˚1 , . . . , k
˚
I u

For each k˚ P ZpHq locally k P Bδpk˚q ÞÑ Wk P UpNq such that

WkHkW ˚
k “

˜

H0
k 0

0 HQ
k ` HR

k

¸

with invertible H0
k , remainder }HR

k } ď C|k ´ k˚|2, and

linear term HQ
k given by a direct sum of q˚ summands of the form

HW {D
k “

d
ÿ

j“1

sjpk ´ k˚qjΓj

with slopes s1, . . . , sd P Rzt0u and Γ1, . . . , Γd irrep of Clifford alg. Cd

Terminology for d odd/even: Weyl/Dirac point of multiplicity q˚
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Example of 2d semimetal: graphene
On honeycomb lattice “ decorated triangular lattice, so on `2pZ2q b C2

H “

˜

0 S1 ` S˚1 S2 ` 1
S˚1 ` S˚2 S1 ` 1 0

¸

where S1,S2 shifts on `2pZ2q. Clearly chiral σ3Hσ3 “ ´H. Fourier:

H –

ż ‘

T2
dk

˜

0 eik1 ` eipk2´k1q ` 1
e´ik1 ` e´ipk2´k1q ` 1 0

¸

Dirac points k˘ “ p
p3˘1qπ

3 ,0q DOS vanishes at E “ 0 (pseudogap)
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Instability of semimetals
In d “ 2, Dirac points are stable only if chiral symmetry preserved

In d “ 3, Weyl points are stable and generic (Wigner-von Neumann)

But move energetically, unless some symmetry fixes them at EF “ 0

Points of ”topological phase transitions” are often semimetals

There are variants: e.g. line node semimetals

Disordered semimetal: random (potential) perturbation of the above

Open: in d “ 2 pseudogap stable for chiral random perturbation?

Invariants (that will be addressed here):

‚ number of Weyl/Dirac points, possibly weighted by topological charge

‚ weak invariants in direction j “ 1, . . . ,d (like winding # in d ą 1)

ChtjupAq “ ıETr x0|A´1ırA,Xj s|0y , H “

˜

0 A
A˚ 0

¸
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Spectral localizer (strong even pairings in even d)
Hamiltonian H “ H˚ on H and P “ χpH ă 0q with gap g “ }H´1}´1

Dirac operator D “
řd

j“1 γjXj on H‘H is odd w.r.t. Γ “ γd`1 “
`1 0

0 ´1

˘

Thus D “ ´ΓDΓ “
` 0 D1
pD1q˚ 0

˘

and Dirac phase F “ D1|D1|´1

rH,D1s bounded ùñ ChdpPq “ IndpPFP ` 1´ Pq index theorem

Lκ “

˜

´H κD1

κ pD1q˚ H

¸

“ ´H b Γ ` κD , κ ą 0

Theorem (with Loring 2018)
Lκ,ρ restriction (Dirichlet) to finite-dimensional range of χp|D| ď ρq with

}rH,D1s} ď
g3

12 }H}κ
,

2 g
κ

ď ρ

Then Lκ,ρ has gap g
2 and

ChdpPq “ 1
2 SigpLκ,ρq P Z
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Schematic representation

Lκpλq “

˜

´λH κD1

κpD1q˚ λH

¸

, λ ě 0

Spectrum for λ “ 0 symmetric and with space quanta κ

σpLκp0qq

κ

0

Spectrum for λ “ 1: less regular, central gap open and asymmetry

σpLκp1qq

g

0

Spectral asymmetry determined by low-lying spectrum (finite volume!)
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Spectrum and signature of localizer
(Dual) Dirac D “

řd
i“1 γiXi on `2pZd ,CNq locality: }rD1,Hs} ă 8

Spectral localizer (placing Hamiltonian in a Dirac trap):

Lκ “

˜

´H κD1

κpD1q˚ H

¸

No functional calculus, just place H and D in 2ˆ 2! Typical result:

-4 -2 0 2 4
0

20

40

60

80

DOS of Spectral Localizer

ρ “ 6, κ “ 0.1, etc. half-signature easy to compute
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Spectral localizer (strong odd pairings in odd d)
For chiral Hamiltonian with gap g “ }H´1}´1

H “

˜

0 A
A˚ 0

¸

Odd Chern # ChdpPq are (higher) winding numbers. Index theorem

ChdpPq “ IndpEUE ` 1´ Eq

where E “ χpD ą 0q and U “ A|A|´1. Odd spectral localizer:

Lκ “

˜

κD A
A˚ ´κD

¸

Theorem (with Loring 2017)

For κ and ρ as above, Lκ,ρ is invertible and

ChdpPq “ 1
2 SigpLκ,ρq
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Motivation for Weyl/Dirac point count

m P R ÞÑ Hpmq path of periodic Hamiltonians on `2pZd ,CNq

Focus on d even (for d odd: chiral symmetry)

Suppose ”topological transition” through semimetal at m “ 0

Hpmq gapped at EF “ 0 for |m| P p0,m0q, but no gap for m “ 0

ChdpPpmqq “ 1
2 SigpLκ,ρpmqq

Transfer of topological charge given by

ChdpPpmqq ´ ChdpPp´mqq “ 1
2 SigpLκ,ρpmqq ´ 1

2 SigpLκ,ρp´mqq

“ 1
2 SF

`

m1 P r´m,ms ÞÑ Lκpm1q
˘

Guess: eigenvalue crossings precisely at m1 “ 0

Not covered by earlier results (which require gaps)!
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Semiclassical Weyl/Dirac point count

Theorem

H ideal semimetal with I singular points at Fermi level

Multiplicities are q˚1 , . . . ,q
˚
I

Use even localizer Lκ “

˜

´H κD
κD H

¸

for odd d, and odd one for even d

Then exist constants c and C such that

I
ÿ

i“1

q˚i “ Tr
`

χp|Lκ| ď cκ
2
3 q
˘

“ Tr
`

χp|Lκ| ď Cκ
1
2 q
˘

Two facts:

‚ spectrum in r´cκ
2
3 , cκ

2
3 s consists of

řI
i“1 q˚i eigenvalues

‚ no further spectrum in r´Cκ
1
2 ,Cκ

1
2 s
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Numerical example: Weyl points of d “ 3 system

H “ Hp`ip ` δ

˜

0 S3 ` S˚3
S3 ` S˚3 0

¸

` λHdis on `2pZ3,C2q
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Low-lying DOS of Spectral Localizer

ρ “ 7, so cube of size 15, δ “ 0.6, µ “ 1.2, λ “ 0.5, κ “ 0.1

Approximate kernel dimension counts number of Weyl points

Also: eigenvalues in r´e´c1{κ,´e´c1{κs (tunnel effect in k -space)

N.B.: Weyl point count stable under small disordered perturbation
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Semiclassical perspective on spectral localizer
Consider Cayley transform of even spectral localizer for d odd:

rLκ “ C˚ Lκ C “

˜

0 κD ´ ıH
κD ` ıH 0

¸

As KerpLκq “ KerpL2
κq “ C KerprL2

κq, approximate kernel is linked

to semiclassical Schrödinger-like operators on L2pTd ,C2Nq:

F prLκq2 F˚ “

˜

κ2D2 ` H2 ´ κırD,Hs 0
0 κ2D2 ` H2 ` κırD,Hs

¸

Weyl points of H lead to quadratic wells of potential H2

However ˘κirD,Hs shift eigenvalues by Opκq

Low-lying spectrum accessible by rough semiclassics

Technique: IMS localization à la Simon with improvements by Shubin
Invariants of disordered semimetals via the spectral localizer 13 / 19



Local normal form: localizer of Weyl Hamiltonian
Weyl Hamiltonian HW “

řd
j“1 sjΓjXj on L2pRd ,Cd 1q where d 1 “ 2t d

2 u

LW
κ “

˜

´HW κD
κD HW

¸

“

˜

´
řd

j“1 sjΓjXj κ
řd

j“1 γjBj

κ
řd

j“1 γjBj
řd

j“1 sjΓjXj

¸

Here γj and Γj commute and act on Cd 1 b Cd 1 . Hence

pLW
κ q

2 “

˜

řd
j“1p´κ

2B2
j ` s2

j X 2
j q ` κM 0

0
řd

j“1p´κ
2B2

j ` s2
j X 2

j q ´ κM

¸

with selfadjoint matrix M “
řd

j“1 sjγjΓj

Harmonic oscillator spectrum with representation theoretic methods:

Lemma
KerpLW

κ q is one-dimensional and first excited state is Op
?
κq

Together with IMS this implies Theorem for odd d . Even d similar l
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Topological charges (chiralities) of Weyl points
For d odd, chirality of singular point k˚i with small ball Bεpk˚i q

c˚i “ Chd´1pH|H|´1, BBεpk˚i qq

Fact: c˚i “ p´1q
d`1

2
śd

j“1 sgnpsi,jq determines SF at top. phase trans.

Theorem (Fermion doubling by Nielsen and Ninomiya)
I
ÿ

i“1

c˚i “ 0

Fact: c˚i determines whether kernel in upper or lower component of rLκ

Supposing kernels are not approximate, with J “

˜

1 0
0 ´1

¸

,

I
ÿ

i“1

c˚i « SigpJ|KerpLκqq “ IndpκD ` iHq “ IndpκDq “ 0

because index on a compact manifold Td has vanishing index
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Generalized Callias index theorems

Kernel actually empty, but argument gives Callias-type index theorem

C1-map x P Rd ÞÑ Hx “ pHxq
˚ of selfadjoint Fredholm operators

Hx uniformly invertible for |x | ě Rc

Hypothesis: zero set ZpHq “ tx P Rd : dimpKerpHxqq ě 1u finite

For x˚i P ZpHq topological charge c˚i “ Chd´1pH|H|´1, BBδpx˚i qq

Theorem
d odd and D “ γ ¨ B Dirac operator on Rd . For all κ ď 1,

IndpκD ` iHq “ SigpJ|KerpLκqq “
ÿ

x˚i PZpHq

c˚i

Proof: similar to Witten’s semiclassical proof of Morse inequalities

R.h.s.: multiparameter spectral flow counting Weyl points with charge
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Weak invariants in chiral semimetals

H “

˜

0 A
A˚ 0

¸

chiral semimetal (such as graphene)

ChtjupAq “ ıETr x0|A´1ırA,Xj s|0y , j “ 1, . . . ,d

Proposition
ChtjupAq well-defined whenever there is a pseudogap

Define weak spectral localizer in direction j

Lw ,j
κ,ρ “

˜

κXj A˚ρ,j
Aρ,j ´κXj

¸

, Hρ,j “

˜

0 A˚ρ,j
Aρ,j 0

¸

where Hρ,j on r´ρ, ρs2 with Dirichlet bc in j and periodic bc in others

Proposition

ChtjupAq “
1

2ρ` 1
E

1
2

SigpLw ,j
κ,ρq ` Opρ´1, κq
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Numerical example: weak localizer for graphene
Take H graphene Hamiltonian

Histogram of eigenvalues of Lw ,1
κ,ρ for ρ “ 34 and κ “ 0.1
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Computed half-signature is 23 so Cht1upAq « 23
69 «

1
3 as 2ρ` 1 “ 69
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Bulk-boundary correspondence in semimetals
Theorem
Consider an chiral ideal semimetal Hamiltonian H “ ´JHJ
Given ξ P Sd´1, restrict it to a half-space perpendicular to ξ denoted pH
Random local surface perturbations are allowed. Then

pT pJ KerppHqq “
d
ÿ

j“1

ξj ChtjupAq

where pT trace per surface along the boundary

Example for graphene as above, ξ “ e1. Flat band 48 « 2 1
3 69 states
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