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Motivation- fractional QHE

Fractional quantum Hall fluids, where the lowest gapped mode is a spin-two 
mode, the so-called magnetoroton. 

Haldane proposed that the theory governing the dynamics of the 
magnetoroton at long wavelength is a theory of a dynamical metric.

One of the key features of incompressible FQH liquids is a highly collective 
response to external perturbations. In this respect FQH liquids look similar to 
the “classical” liquids and solids. Hydrodynamic theory of fractional quantum 
Hall states is viscoelastic as suggested by Tokatly and later revisited by Son.



Motivation- composite materials
Concrete is cheap and relatively light, but it 
breaks apart easily under tension. By contrast, 
steel is strong but expensive and heavy. By 
pouring the concrete around prestressed metal 
bars one obtains a composite, namely, reinforced 
concrete, that is cheap, relatively light, and strong.

Modern day composites can also 
involve materials made of 
programmable robots. Macroscopic 
description of such materials requires a 
modified viscoelastic description.
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Active matter
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We want to 
understand the 
principles behind 
systems, whose 
microscopic 
constituents are not in 
equilibrium (flocks, 
fish schools)

Active matter systems are made up of units that consume energy. 
Physicists group flocks of birds, molecular motors and layers of vibrating 
grains together in this category because they all extract energy from their 
surroundings at a single particle level and transform it into mechanical 
work. By studying the behaviors that emerge, our understanding of these 
systems can be enhanced and new frameworks for investigating the 
statistical physics of out-of-equilibrium systems can be built.
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Active matter

Dry active matter

Wet active matter

Although understanding active matter is in general challenging due to its 
overall complexity, we want to have some basic organising principles 
based on symmetries and conservation laws. This is in analogy to what we 
do in physics to construct the long-wavelength hydrodynamic behaviour 
of microscopic systems.

This classification is based on the momentum conservation. Dry systems 
do not conserve momentum and wet systems conserve momentum. 
Examples of dry active matter include migrating animals and wet active 
matter e.g. various suspensions.

Here we are interested in understanding models and principles behind 
activity in the context of viscoelasticity. Most of the work in this direction 
is concerned with systems containing polar order. As we will see odd 
viscoelasticity is different and offers a much simpler framework. 



Landau paradigm

Disordered liquid states that do not break any symmetry [(A), (C), and (E)].
Ordered states that spontaneously break some symmetries [(B), (D), and (F)].
For example, the energy function has a symmetry � ! ��, "g(�) = "g(��).
However, as the parameter g (e.g., magnetic field) changes, the minimal energy
state (the ground state) sometimes respects the symmetry [(A), (C), and (E)]
and other times must settle into a state that does not respect the symmetry.
Landau theory generalizes the above picture to describe all phases and all phase
transitions. Within this theory, the symmetry of the ordering of constituent
particles distinguishes one phase from another.
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Elasticity
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At distances large compared to the lattice
constant, one can define a displacement field

such that
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The Cosserat theory of elasticity, also known as micropolar elasticity, endows

classical elasticity with local rotations. Physically it means that the elastic body

is not considered as a collection of points at the microscopic level but rather of

extended objects the can rotate in space. In two dimensions the displacement

vector ui is supplemented with an orientation angle ✓. In the second step we

require that the e↵ective action/free energy is invariant under translations and

rotations. Translations require that under the transformation ui ! ui + bi,

where bi is a constant vector the action remains invariant. Rotations by a

constant angle ✓0 are implemented by two simultaneous transformations ✓ !
✓ + ✓0, ui ! ui + ✏ijxj✓0. Gradients of the displacement field are invariant

under translations but not under rotations. It is, however, possible to construct

a combination

�ij = @iuj � ✏ij✓

The free energy reads
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Cosserat elasticity
Frenzel

et al.



Active diffusion
We are interested in a long-wavelength/long time dynamics of active 
systems. Let us look at a simple example of diffusion 

Our hydrodynamic theory is a theory of a single scalar quantity - density. 
Interactions with the bath are measured by a chemical potential. In order to 
make the approach useful we express the current as an expansion around 
equilibrium.
⇢(t, x) = C1µ(t, x) +O(r2) Ji(t, x) = D1riµ(t, x) +O(r2)

@t⇢(t, x) = riJ
i(t, x)

@t⇢(t, x) =
D1

C1
riri

⇢(t, x) ⌘ Driri
⇢(t, x)

We are interested in a long-wavelength/long time dynamics of active 
systems. Let us look at a simple example of diffusion 

In equilibrium constrains on the coefficients and terms than can appear. In active 
systems no such constraints. General lesson for active systems - transport 
coefficients can have values forbidden in equilibrium and new terms can appear. 
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This conservation of particle number is expressed in hydrodynamics as conservation of mass, 
by the continuity equation

We are still one equation short to have a complete system. We add entropy conservation 
equation, which can be expressed as energy conservation using thermodynamics

Another equation is the equation of motion of a fluid element. This equation can be 
written as a momentum conservation equation.

Hydrodynamics - physics perspective 
(theory of conserved quantities)

Rewriting we get the Euler’s equation
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Hydrodynamics - math perspective
 Definition A set G of smooth transformations of a manifold M into itself is
called a group if
(i) along with every two transformations g, h ∈ G, the composition g ◦ h
belongs to G (the symbol g ◦ h means that one first applies h and then g);
(ii) along with every g ∈ G, the inverse transformation g^−1 belongs to G as well.
From (i) and (ii) it follows that every group contains the identity transformation
(the unity) e.
A group is called a Lie group if G has a smooth structure and the operations (i)
and (ii) are smooth.

Diffeomorphisms preserving the volume element in a domain M
form a Lie group denoted by SDiff(M).

The group S Diff(M) can be regarded as the configuration space of an 
incompressible fluid filling the domain M.



Viscoelasticity

Viscoelasticity is the property of materials that exhibit both viscous 
and elastic characteristics when undergoing deformation.

Modelled 
by a 

spring

Modelled 
by a 

dashpot/
damper

Modelled by a 
combination of 

springs and 
dashpots

The creep-recovery test 
involves loading a 
material at constant stress, 
holding that stress
for some length of time 
and then removing the 
load. 



Linear spring
The constitutive equation for a material which responds as a linear elastic spring

of sti↵ness E is

" =
1

E
�

Linear viscous dashpot

"̇ =
1

⌘
�

⌘ is the viscosity of the material. This is the characteristic response of Newtonian

fluids. The larger is the stress, the faster is the straining.

An elastic material undergoes an instantaneous elastic strain upon loading,

maintains that strain so long as the load is applied, and instantaneously goes

back to the initial position upon removal of the load.

A dashpot responds with a strain rate proportional to the applied stress



Creep recovery response

Linear spring

The creep response follows immediately from the solution of 
constitutive equations
Dashpot

"(t) = �0J(t) J(t) =
t

⌘

J(t) is called the creep (compliance) function.

J(t) =
1

E



Kelvin Voigt solid

" =
1

E
�1 "̇ =

1

⌘
�2

� = �1 + �2

We first consider a two-element model, the Kelvin-Voigt model, which consists of a 
spring and dashpot in parallel. We assume no bending moment.

Total stress is a sum of the individual stresses in the dashpot and the spring. Responses 
are controlled by elastic and viscous transport coefficients. Eliminating individual 
components of the stress one gets the constitutive equation:

� = E"+ ⌘"̇
Solving the first order non-homogeneous differential with vanishing initial strain gives 

"(t) =
�0

E

h
1� e�(E/⌘)t

i
⌘
E ⌘ ⌧R

Retardation time is a measure of the time taken for the creep strain to accumulate.



Maxwell fluid
Another possibility for a two element representation of a viscoelasticity is a spring and 
dashpot in series, known as the Maxwell model.

"1 =
1

E
� "̇2 =

1

⌘
� " = "1 + "2

Total strain is a sum of the individual strains in the dashpot and the spring. One can 
eliminate the individual strains to get the constitutive equation

� +
⌘

E
�̇ = ⌘"̇

When the Maxwell model is subjected to a stress, the spring will stretch immediately 
and the dashpot will take time to react. Using this as the initial condition gives

"(t) = �0

✓
1

⌘
t+

1

E

◆

A new feature is the stress relaxation.



Limitations

The Maxwell model predicts creep, but it does not 
decrease with time. There is no anelastic recovery 
(strain recovers over time).

No stress relaxation in the Kelvin-Voigt model

Not covariant

Not applicable to chiral systems

No plasticity



Three element models
The usual procedure to get more realistic models of viscoelasticity is to increase the 
number of elements. the simplest extension is to add one spring or one dashpot. Again 
one distinguishes two classes of models: standard linear solids (Zener models) or 
standard linear fluids (Jeffreys models)

� + ⌧ �̇ = E1"+ ⌧E2"̇

Constitutive relation Representation

� + ⌧ �̇ = ⌘1"̇+ ⌧⌘2"̈

In order to derive the constitutive equations we need to solve equations for individual 
elements. The can be done in one dimension but becomes not practical in higher 
dimensions. Therefore we would like to follow the symmetry approach.



Navier-Stokes equation from 
symmetries
What terms we can write to describe a Galilean invariant fluid? We postulate 
that in very reference frame the physics is the same

t

0 = t,
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~
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We check how the derivatives transform:
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There is a leftover term. We check how it transforms

(~v0 · ~r0)~v0 = (~v · ~r)~v + (~u · ~r)~v

We can construct an invariant equation

~r0 = ~r r02~v0 = r2~v
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Oldroyd models
Oldroyd in 1950 formulated the first systematic attempt to provide constitutive models for 
viscoelastic fluids in a way that respects material frame indifference. In other words 
stresses in a continuous medium should arise from deformations only and not from 
rotations. We saw that in the context of NS equations

d/dt ! @/@t+ (v ·r)

This simple substitution does not work if we act on tensors. Oldroyd proposed several 
derivatives that transform covariantly w.r.t. rotations. In the modern language such a 
corresponds to a covariance under diffeomorphisms of the fluid manifold. From 
differential geometry we know that the derivative that generates the diffeomorphism is 
the Lie derivative.

D

Dt
Ai...m

j...n = Ȧi...m
j...n + LNAi...m

j...n

N i
describes the movement of a fluid particle w.r.t. the coordinate (frame)

choice in the fluid space.



Transport and elastic coefficients

A small deformation parametrized by a displacement vector ui, i = 1, . . . , d
produces a stress that depends on the strain uij = @iuj + @jui and the strain

rate u̇ij ⌘ @tuij through the elastic modulus (K) and viscosity (⌘) tensors

Tij = p�ij �Kijklukl � ⌘ijklu̇kl.

As a warm-up exercise let us consider fluids. The first term is the pressure. 
When time reversal invariance is not broken, the viscosity tensor satisfies 
Onsager's relations

⌘ijkl = ⌘klij .

For a rotationally invariant system the above relation allows one
 only two possible transport coefficients, the shear and bulk viscosities

⌘ijkl = ⌘(�ik�jl + �il�jk) +

✓
⇣ � 2

d
⌘

◆
�ij�kl.



“Odd” transport in two dim.

When time reversal invariance is broken, as for instance if a background 
magnetic field is turned on, the conditions Onsager are relaxed and it is 

possible to have an `odd' contribution to the viscosity

⌘(A)
ijkl = �⌘(A)

klij .

A peculiarity of the odd viscosity is that can be dissipationless. The 
variation of the energy density under a strain is

Using the first law of thermodynamics �" = T �s � p�V , with s the entropy

density, T the temperature and V the volume, the change of entropy with time

becomes

�" = �Tij�uij .

T ṡ = ⌘ijklu̇ij u̇kl.



Odd viscosity

In general, ⌘(A) = 0 if rotational invariance is not broken. However, for d = 2
spatial dimensions an odd viscosity is allowed if parity is also broken

⌘(A)
ijkl = �⌘H

2
(✏ik�jl + ✏jk�il + ✏il�jk + ✏jl�ik).

Is it possible to have an analogous expression for elasticity?

Shear response Odd/Hall response

“Everyone knew it was impossible, until a fool who didn’t know came along and did it.”— Albert Einstein



Odd viscosity in 
active matter

` = I⌦Dt⇢ = 0

Dt` = ⌧ +D⌦r2⌦� �⌦⌦� ✏ij�ij

Dtgi = @j�ij � �vvi .

Conservation of angular momentum dictates that the stress tensor of any medium with 
vanishing bulk external torque must be symmetric under the exchange of its two indices. 
This conclusion, however, does not apply to chiral fluids composed of self-spinning 
constituents.

Dt = @t + vk@k

gi = ⇢vi

Angular momentum

Linear momentum

Material derivative

The idea is to generate odd viscosity as an expansion around non-equilibrium state
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Banerjee, Souslov, Abanov, Vitelli



Odd Elasticity

Free energy for elasticity reads

Odd terms vanish identically

K [ij]kl = 0

Kij[kl] = 0

Kijkl = Kklij

left minor symmetry

right minor symmetry

major symmetry
Odd elasticity implies a violation of major symmetries. Differs 
from Cosserat elasticity.
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Elasticity in two dimensions

u0
(x) = ⌧0ijuij(x) Dilation

u1
(x) = ⌧1ijuij(x) Rotation

u2
(x) = ⌧2ijuij(x) Shear strain 1

u3
(x) = ⌧3ijuij(x) Shear strain 2

Avron



Viscoelastic odd KV solids

Isotropy and conservation laws
fix the form of the elastic tensor. In 
the usual case two positive elastic 

moduli.

K↵� = 2

0
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0 0 µ 0
0 0 0 µ

1
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↵�

If one doesn’t impose the 
conservation of energy two new 
coefficients are allowed. Stability 

requires adding a relaxation 
mechanism e.g. viscosity.

K↵� = 2
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Possible mechanical realisation

Scheibner, Souslov, Banerjee, 
Surówka, Irvine, Vitelli



Odd viscoelastic Maxwell fluids

The constitutive equation together with the momentum conservation equation for the 
Maxwell fluid read

vkl = ⌘�1
ijkl�ij + �1

ijkl

D

Dt
�ij ,

⇢
D

Dt
vi = �@ip+ @j�ij ,

These equations are much more complicated to deal with then for solids with a lot of 
unknown properties. As simple physical example we can look at relaxation times

⌧̃ =
⌘ + ⇣

µ+ �
⌧̃1,2 =

⌘oo + ⌘µ± i(⌘oµ� ⌘o)

µ2 + (o)2

Contrary to even viscoelastic fluids transverse and longitudinal modes cannot be 
decoupled. The non-dissipative part corresponds to chiral metric hydrodynamics
proposed by Son to describe fractional Hall states.

Banerjee, Vitelli, Jülicher, 
Surówka



Lift force

New incarnation of an old problem: what are 
the forces on a cylinder in an odd fluid?

What about compressible odd fluids? In the steady case the lift force is 
present only if mass is not conserved. However, the lift force can be 
present if the fluid is oscillating. This opens up a possibility to measure 
it by microrheological experiments. 

In a fluid without parity breaking the cylinder 
experiences only drag. Symmetries in odd fluids 

do not forbid lift, although it was shown by 
Ganeshan and Abanov that incompressible odd 

fluid does not experience lift.  
fl / !̃ ln !̃

Lier, Duclut, Bo, Armas, Jülicher, 
Surówka, arXiv:2205.12704



Conclusions

Odd viscoelasticity is a new phenomenon, which 
can shed light on aspects of meta-materials and 
active matter

Lift is a potential new experimental probe

Topological modes (work in progress)

Stability, turbulence (work in progress)

Thank you!


